X

Toán 9 Chân trời sáng tạo

Bài 6 trang 89 Toán 9 Tập 1 Chân trời sáng tạo


Cho đường tròn (O; 5 cm) điểm M nằm ngoài (O) sao cho hai tiếp tuyến MA và MB (A, B là hai tiếp điểm) vuông góc với nhau tại M.

Giải Toán 9 Bài 2: Tiếp tuyến của đường tròn - Chân trời sáng tạo

Bài 6 trang 89 Toán 9 Tập 1: Cho đường tròn (O; 5 cm) điểm M nằm ngoài (O) sao cho hai tiếp tuyến MA và MB (A, B là hai tiếp điểm) vuông góc với nhau tại M.

a) Tính độ dài của MA và MB.

b) Qua giao điểm I của đoạn thẳng MO và đường tròn (O), vẽ một tiếp tuyến cắt OA, OB lần lượt tại C, D. Tính độ dài của CD.

Lời giải:

Bài 6 trang 89 Toán 9 Tập 1 Chân trời sáng tạo

Vì MA, MB lần lượt là hai tiếp tuyến của đường tròn (O) tại A, B nên MA ⊥ OA và MB ⊥ OB hay OAM^=90°;  OBM^=90°.

Xét tứ giác OAMB có: OAM^=90°;  OBM^=90°;  AMB^=90°(do MA ⊥ MB).

Do đó tứ giác OAMB là hình chữ nhật.

Lại có OA = OB = 5 cm (do A, B nằm trên đường tròn (O; 5 cm)).

Suy ra hình chữ nhật OAMB là hình vuông, nên MA = MB = OA = OB = 5 cm.

b) Vì OAMB là hình vuông nên AOB^=90° và OM là tia phân giác của góc AOB.

Do đó AOM^=BOM^=12AOB^=1290°=45°.

Vì CD là tiếp tuyến của đường tròn (O) tại I nên CD ⊥ OI.

Xét ∆OCI vuông tại I, ta có: CI=OItanCOI^=5tan45°=5 (cm).

Xét ∆ODI vuông tại I, ta có: DI=OItanCDOI^=5tan45°=5 (cm).

Vậy CD = CI + DI = 5 + 5 = 10 (cm).

Lời giải bài tập Toán 9 Bài 2: Tiếp tuyến của đường tròn hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: