Khám phá 2 trang 85 Toán 9 Tập 1 Chân trời sáng tạo
Cho điểm A nằm trên đường tròn (O; R), đường thẳng d đi qua A và vuông góc với OA. Gọi M là một điểm trên d (M khác A).
Giải Toán 9 Bài 2: Tiếp tuyến của đường tròn - Chân trời sáng tạo
Khám phá 2 trang 85 Toán 9 Tập 1: Cho điểm A nằm trên đường tròn (O; R), đường thẳng d đi qua A và vuông góc với OA. Gọi M là một điểm trên d (M khác A).
a) Giải thích tại sao ta có OA = R và OM > R.
b) Giải thích tại sao d và (O) không thể có điểm chung nào khác ngoài A.
Lời giải:
a) Vì điểm A nằm trên đường tròn (O; R) nên OA = R.
Ta có OA vuông góc với đường thẳng d tại A nên OA là khoảng cách từ điểm O đến đường thẳng d.
Do OA, OM lần lượt là đường vuông góc, đường xiên kẻ từ O đến đường thẳng d nên OA < OM.
Mà OA = R nên OM > R.
b) Ta có OA = R nên d tiếp xúc với đường tròn (O; R) tại A.
Mà khi đường thẳng d tiếp xúc với đường tròn (O; R) thì đường thẳng d và đường tròn (O; R) có duy nhất một điểm chung.
Vậy d và (O) không thể có điểm chung nào khác ngoài A.
Lời giải bài tập Toán 9 Bài 2: Tiếp tuyến của đường tròn hay, chi tiết khác: