Bài 3.11 trang 52 Chuyên đề Toán 10


Giải Chuyên đề Toán 10 Bài 6: Hypebol

Haylamdo biên soạn và sưu tầm lời giải Bài 3.11 trang 52 Chuyên đề Toán 10 trong Bài 6: Hypebol. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.

Bài 3.11 trang 52 Chuyên đề Toán 10: Chứng minh rằng tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.

Lời giải:

Xét hypebol có phương trình chính tắc là x2a2y2b2=1 (a > 0, b > 0).

Hai đường tiệm cận của hypebol là: d1 : y=bax hay bx + ay = 0 và d2 : y=bax hay bx – ay = 0.

Xét điểm M(x; y) bất kì thuộc hypebol. Ta có:

d(M, d1) = bx+ayb2+a2, d(M, d2) = bxayb2+a2.

⇒ d(M, d1).d(M, d2) = bx+ayb2+a2.bxayb2+a2=bx2ay2a2+b2 (*).

Mặt khác, vì M(x; y) thuộc hypebol nên x2a2y2b2=1x2b2a2y2a2b2=1

bx2ay2=a2b2

Thay vào (*) ta được: d(M, d1).d(M, d2) = a2b2a2+b2=a2b2a2+b2 (không đổi).

Vậy tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.

Xem thêm lời giải bài tập Chuyên đề Toán 10 Kết nối tri thức hay, chi tiết khác: