HĐ2 trang 49 Chuyên đề Toán 10
Giải Chuyên đề Toán 10 Bài 6: Hypebol
Haylamdo biên soạn và sưu tầm lời giải HĐ2 trang 49 Chuyên đề Toán 10 trong Bài 6: Hypebol. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.
HĐ2 trang 49 Chuyên đề Toán 10: Cho điểm M(x0; y0) thuộc hypebol có hai tiêu điểm F1(–c; 0), F2(c; 0), độ dài trục thực bằng 2a.
a) Tính MF12 – MF22.
b) Giả sử M(x0; y0) thuộc nhánh chứa đỉnh A2(a; 0), tức là, MF1 – MF2 = 2a. Tính MF1 + MF2, MF1, MF2.
c) Giả sử M(x0; y0) thuộc nhánh chứa đỉnh A1(–a; 0), tức là, MF2 – MF1 = 2a. Tính MF1 + MF2, MF1, MF2.
Lời giải:
a) MF12 – MF22 = (x2 + 2cx + c2 + y2) – (x2 – 2cx + c2 + y2) = 4cx.
b) Ta có: MF12 – MF22 = 4cx ⇒ (MF1 + MF2)(MF1 – MF2) = 4cx
⇒ (MF1 + MF2)2a = 4cx
⇒ MF1 + MF2 = = x. Khi đó:
(MF1 + MF2) + (MF1 – MF2) = x + 2a ⇒ 2MF1 = x + 2a
⇒ MF1 = a + x =
(MF1 + MF2) – (MF1 – MF2) = x – 2a ⇒ 2MF2 = x – 2a
⇒ MF2 = x – a =
c) Ta có: MF12 – MF22 = 4cx
⇒ (MF1 + MF2)(MF1 – MF2) = 4cx
⇒ (MF1 + MF2)(–2a) = 4cx
⇒ MF1 + MF2 = = –x. Khi đó:
(MF1 + MF2) + (MF1 – MF2) = –x + (–2a) ⇒ 2MF1 = –x – 2a
⇒ MF1 = – =
(MF1 + MF2) – (MF1 – MF2) = –x – (–2a) ⇒ 2MF2 = – x+ 2a
⇒ MF2 = a –x =