Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước


Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau:

Giải sách bài tập Toán 11 Bài tập cuối chương 3 - Chân trời sáng tạo

Bài 6 trang 94 SBT Toán 11 Tập 1: Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau:

Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích 14).

Bước 2: Làm tương tự như Bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích 142).

Cứ tiếp tục quá trình như vậy (ở bước thứ n, bỏ đi 3n‒1 tam giác, mỗi tam giác diện tích 14n). Tính tổng diện tích các tam giác đã bỏ đi.

Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước

Lời giải:

Ta có:

S=14+3142+32143++3n14n+1+

=14+1434+14342++1434n+

Đây là tổng cấp số nhân lùi vô hạn với số hạng đầu u1=14, công bội q=34 thỏa mãn |q| < 1 nên S=141134=1.

Lời giải Sách bài tập Toán lớp 11 Bài tập cuối chương 3 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Chân trời sáng tạo hay, chi tiết khác: