Cho hai đường thẳng ∆1, ∆2 với m là tham số thực; t1, t2 là tham số của phương trình đường thẳng


Cho hai đường thẳng ∆: và ∆: với m là tham số thực; t, t là tham số của phương trình đường thẳng. Tìm m để hai đường thẳng đó vuông góc với nhau.

Giải SBT Toán 12 Cánh diều Bài 2: Phương trình đường thẳng

Bài 40 trang 60 SBT Toán 12 Tập 2: Cho hai đường thẳng ∆1: x=113t1y=5+4t1z=mt1 và ∆2: x=4+5t2y=2+3t2z=2t2 với m là tham số thực; t1, t2 là tham số của phương trình đường thẳng. Tìm m để hai đường thẳng đó vuông góc với nhau.

Lời giải:

Ta có: u1 = (−3; 4; m), u2 = (5; 3; 2) lần lượt là vectơ chỉ phương của hai đường thẳng ∆1, ∆2.

Hai đường thẳng vuông góc với nhau khi hai vectơ chỉ phương vuông góc với nhau.

Suy ra (−3).5 + 4.3 + m.2 = 0 hay m = 32

Lời giải SBT Toán 12 Bài 2: Phương trình đường thẳng hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: