X

Lý thuyết Toán lớp 6 - KNTT

Tóm tắt lý thuyết Toán lớp 6 Chương 6: Phân số | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức


Haylamdo biên soạn và sưu tầm với tóm tắt lý thuyết Toán lớp 6 Chương 6: Phân số hay nhất, chi tiết sách Kết nối tri thức với cuộc sống sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 6.

Toán lớp 6 Chương 6: Phân số - Lý thuyết chi tiết




Lý thuyết Toán 6 Bài 23: Mở rộng phân số. Phân số bằng nhau

I. Lý thuyết

1. Mở rộng khái niệm về phân số

– Định nghĩa về phân số: Với a, b ∈ ℤ, b ≠ 0 , ta gọi Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một phân số, trong đó a là tử số (tử), b là mẫu số (mẫu) của phân số.

Ví dụ 1: 

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một phân số với tử số là 5 và mẫu số là 4 đọc là năm phần tư.

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một phân số với tử số là –10 và mẫu số là 4 đọc là âm mười phần tư.

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một phân số với tử số là 3 và mẫu số là –7 đọc là ba phần âm bảy.

Chú ý: Mọi số nguyên đều có thể viết dưới dạng phân số.

Ví dụ 2: 

Số 3 có thể viết dưới dạng phân số là Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức .

Số –8 có thể viết dưới dạng phân số là Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức .

2. Hai phân số bằng nhau

Hai phân số Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thứcMở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức được gọi là bằng nhau nếu a.d = b.c. Khi đó ta viết là Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức .

Ví dụ 3: Hai phân số Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  bằng nhau vì 5.12 = 60 và 6.10 = 60.

3. Tính chất cơ bản của phân số

– Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho.

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức với a, b, m ∈ ℤ; b≠0; m≠0.

– Nếu chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho.

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức với n là ước chung của a và b; a, b, m ∈ ℤ; b≠0 .

Ví dụ 4: 

Mở rộng phân số. Phân số bằng nhau | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 

Lý thuyết Toán 6 Bài 24: So sánh phân số. Hỗn số dương

I. Lý thuyết

1. Quy đồng mẫu nhiều phân số

Để quy đồng hai hay nhiều phân số ta làm như sau:

Bước 1: Tìm một bội chung (thường là BCNN) của các mẫu để làm mẫu chung.

Bước 2: Tìm thừa số phụ của mỗi mẫu bằng cách chia mẫu chung cho từng mẫu.

Bước 3: Nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng.

Ví dụ 1: Để quy đồng ba phân số So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức ta làm như sau:

+ Đưa về các phân số có mẫu dương: So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức .

+ Tìm mẫu chung: BCNN (3; 4; 6) = 12

+ Thừa số phụ: 

12 : 3 = 4

12 : 4 = 3

12 : 6 = 2

Ta có: 

So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức

2. So sánh hai phân số

a) So sánh hai phân số cùng mẫu

– Trong hai phân số cùng một mẫu dương, phân số nào có tử lớn hơn thì phân số đó lớn hơn.

Ví dụ 2: So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  là hai phân số có cùng mẫu số dương.

Vì –3 < 2 nên So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức .

b) So sánh hai phân số không cùng mẫu

– Muốn so sánh hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi so sánh các tử số với nhau: phân số nào có tử số lớn hơn thì phân số đó lớn hơn.

Ví dụ 3: So sánh hai phân số sau: So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức.

BCNN (15; 18) = 90

So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức

Vì –42 > –55 nên So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức do đó,So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 

3. Hỗn số dương

– Khái niệm hỗn số dương: Với a, b, c là những số nguyên dương, ta gọi So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một hỗn số dương với a là phần nguyên và So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là phần phân số.

Ví dụ 4: 

So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một hỗn số dương với phần nguyên là 2 và phần phân số là So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức. Khi đó ta đọc So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là hai năm phần bảy.

So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức là một hỗn số dương với phần nguyên là 1 và phần phân số là So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức . Khi đó ta đọcSo sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  là một bốn phần chín.

– Muốn đổi từ hỗn số sang phân số ta làm như sau:

Bước 1: Giữ nguyên phần mẫu số.

Bước 2: Phần tử số mới sẽ bằng phần mẫu số nhân với phần nguyên và cộng với phần tử số ban đầu.

Ví dụ 5: Đổi hỗn số So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức sang phân số:

So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức

– Muốn đổi từ phân số sang hỗn số (điều kiện tử số của phân số phải lớn hơn mẫu số) ta làm như sau:

Bước 1: Giữ nguyên phần mẫu số và mẫu số này sẽ là mẫu số trong phần hỗn số mới.

Bước 2: Lấy phần tử số chia cho mẫu số, phần thương sẽ là phần nguyên trong hỗn số mới và phần dư là tử số mới của hỗn số.

Ví dụ 6: Đổi phân số So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức sang hỗn số

Ta có 15 chia 9 được thương là 1 và dư 6 do đó:

So sánh phân số. Hỗn số dương | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 

....................................

....................................

....................................

Xem thêm tóm tắt lý thuyết Toán lớp 6 Kết nối tri thức với cuộc sống hay, chi tiết khác: