X

Toán 9 Chân trời sáng tạo

Giải Toán 9 trang 97 Tập 1 Chân trời sáng tạo


Với Giải Toán 9 trang 97 Tập 1 trong Bài 3: Góc ở tâm, góc nội tiếp Toán lớp 9 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 97.

Giải Toán 9 trang 97 Tập 1 Chân trời sáng tạo

Bài 1 trang 97 Toán 9 Tập 1: Cho đường tròn (O; 5 cm) và điểm M sao cho OM = 10 cm. Qua M vẽ hai tiếp tuyến với đường tròn tại A và B. Tính số đo góc ở tâm được tạo bởi hai tia OA và OB.

Lời giải:

Bài 1 trang 97 Toán 9 Tập 1 Chân trời sáng tạo

Xét đường tròn (O; 5 cm), ta có: MA, MB lần lượt là tiếp tuyến tại A, B của (O) nên MA ⊥ OA tại A (tính chất tiếp tuyến) và OM là tia phân giác của AOB^(tính chất hai tiếp tuyến cắt nhau).

Xét ∆OAM vuông tại A, ta có: cosAOM^=OAOM=510=12.

Suy ra AOM =600

Do đó AOB^=2AOM^=260°=120°(do OM là tia phân giác của AOB^

Vậy số đo góc ở tâm được tạo bởi hai tia OA và OB là AOB^ = 1200

Bài 2 trang 97 Toán 9 Tập 1: Cho tam giác đều ABC. Vẽ nửa đường tròn đường kính BC cắt cạnh AB và AC lần lượt tại D và E. Hãy so sánh các cung BD,  DE,  EC.

Lời giải:

Bài 2 trang 97 Toán 9 Tập 1 Chân trời sáng tạo

Gọi O là trung điểm của BC. Khi đó ta có đường tròn (O) đường kính BC chứa các cung BD, DE, EC.

Vì ∆ABC là tam giác đều nên ABC^=ACB^=60°.

Xét ∆OBD có OB = OD (cùng bằng bán kính đường tròn (O) đường kính BC) nên ∆OBD cân tại O.

Lại có DBO^=60° nên ∆OBD là tam giác đều, suy ra BOD^=60°. Khi đó sđBD=60°. (1)

Tương tự, ta cũng có ∆OCE là tam giác đều, suy ra COE^=60°. Khi đó sđCE=60°. (2)

Ta có BC là đường kính của đường tròn nên BOC^=sđBC=180°.

BOC^=BOD^+DOE^+COE^

Suy ra DOE^=BOC^BOD^+COE^

Do đó DOE^=180°60°+60°=60°. Khi đó sđDE=60°. (3)

Từ (1), (2) và (3) ta có: sđBD=sđDE=sđCE =60°.

Do đó các cung BD, DE, EC bằng nhau.

Bài 3 trang 97 Toán 9 Tập 1: Dây cung AB chia đường tròn (O) thành hai cung. Cung lớn có số đo bằng ba lần cung nhỏ.

a) Tính số đo mỗi cung.

b) Chứng minh khoảng cách OH từ tâm O đến dây cung AB có độ dài bằng AB2.

Lời giải:

Bài 3 trang 97 Toán 9 Tập 1 Chân trời sáng tạo

a) Gọi AmBAnB lần lượt là cung lớn và cung nhỏ AB.

Theo bài, ta có: sđAmB=3sđAnB.

sđAmB+AnB=360°

Nên sđAnB+3sđAnB=360°

Hay 4sđAnB=360°, suy ra sđAnB=90°.

Do đó sđAmB=3sđAnB=390°=270°.

b) Xét ∆OAB có OA = OB (cùng bằng bán kính của đường tròn (O)) nên ∆OAB cân tại O.

Do đó đường cao OH đồng thời là đường trung tuyến của tam giác.

Lại có sđAnB=90° (câu a) nên AOB^=90°.

Khi đó ∆OAB vuông tại O có OH là đường trung tuyến ứng với cạnh huyền AB nên OH=AB2.

Bài 4 trang 97 Toán 9 Tập 1: Kim giờ và kim phút của đồng hồ tạo thành một góc ở tâm có số đo là bao nhiêu vào những thời điểm sau?

a) 2 giờ;

b) 8 giờ;

c) 21 giờ.

Lời giải:

Góc ở tâm tạo bởi hai kim giữa hai số liền nhau là: 360° : 12 = 30°.

a) Vào thời điểm 2 giờ (kim giờ chỉ số 2, kim phút chỉ số 12) thì góc ở tâm tạo thành giữa hai kim đồng hồ là:

2 . 30° = 60°.

b) Vào thời điểm 8 giờ (kim giờ chỉ số 8, kim phút chỉ số 12) thì góc ở tâm tạo thành giữa hai kim đồng hồ là:

4 . 30° = 120°.

c) Vào thời điểm 21 giờ (kim giờ chỉ số 9, kim phút chỉ số 12) thì góc ở tâm tạo thành giữa hai kim đồng hồ là:

3 . 30° = 90°.

Bài 5 trang 97 Toán 9 Tập 1: Cho hai đường tròn đồng tâm (O; R) và O; R32. Một tiếp tuyến của đường tròn nhỏ cắt đường tròn lớn tại hai điểm A và B. Tính số đo cung AB.

Lời giải:

Bài 5 trang 97 Toán 9 Tập 1 Chân trời sáng tạo

Gọi H là tiếp điểm của tiếp tuyến của đường tròn nhỏ.

Khi đó, ta có OH ⊥ AB tại H và OH=R32.

Xét ∆OHB vuông tại H, ta có: cosHOB^=OHOB=R32R=32.

Do đó HOB^=30°.

Xét ∆OAB có OA = OB nên ∆OAB cân tại O, do đó đường cao OH đồng thời là đường phân giác của tam giác,

Suy ra AOB^=2HOB^=230°=60°.

Vậy sđAB=AOB^=60°.

Bài 6 trang 97 Toán 9 Tập 1: Xác định số đo các cung AB, BC, CA trong mỗi hình vẽ sau.

Bài 6 trang 97 Toán 9 Tập 1 Chân trời sáng tạo

Lời giải:

– Hình 21a):

Xét ∆ABC có BAC^+ABC^+ACB^=180° (tổng ba góc của một tam giác).

Suy ra ACB^=180°BAC^+ABC^=180°67°+60°=53°.

Xét đường tròn (O):

ACB^ là góc nội tiếp chắn cung AB nên sđAB=2ACB^=253°=106°.

BAC^ là góc nội tiếp chắn cung BC nên sđBC=2BAC^=267°=134°.

ABC^ là góc nội tiếp chắn cung AC nên sđAC=2ABC^=260°=120°.

– Hình 21b):

Xét ∆OAB có OA = OB nên ∆OAB cân tại O, lại có OAB^=60° nên ∆OAB đều. Do đó AOB^=60°.

Ta có: AOB^+BOC^+COA^=360°

Suy ra BOC^=360°AOB^+COA^=360°60°+135°=165°.

Xét đường tròn (O):

sđAB=AOB^=60°.

sđBC=2BOC^=165°.

sđAC=2AOC^=135°.

Bài 7 trang 97 Toán 9 Tập 1: Cho đường tròn (O) có hai đường kính AB, CD vuông góc với nhau. Lấy một điểm M trên cung nhỏ AC rồi vẽ tiếp tuyến với đường tròn (O) tại M. Tiếp tuyến này cắt đường thẳng CD tại S. Chứng minh rằng MSD^=2MBA^.

Lời giải:

Bài 7 trang 97 Toán 9 Tập 1 Chân trời sáng tạo

Vì SM là tiếp tuyến của đường tròn (O) tại M nên SM ⊥ OM tại M.

Xét ∆SMO vuông tại M có MSO^+MOS^=90° (1) (tổng hai góc nhọn trong tam giác vuông bằng 90°).

Lại có hai đường kính AB, CD vuông góc với nhau nên AB ⊥ CD tại O, do đó MOA^+MOS^=90° (2)

Từ (1) và (2) suy ra MSO^=MOA^. (3)

Xét đường tròn (O), MOA^MBA^ lần lượt là góc ở tâm và góc nội tiếp cùng chắn cung AB. Do đó MBA^=12MOA^ hay MOA^=2MBA^. (4)

Từ (3) và (4) suy ra MSO^=2MBA^ hay MSD^=2MBA^.

Lời giải bài tập Toán 9 Bài 3: Góc ở tâm, góc nội tiếp hay khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: