Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8


Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f.

Giải SBT Toán 12 Cánh diều Bài 1: Tính đơn điệu của hàm số

Bài 18 trang 13 SBT Toán 12 Tập 1: Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8.

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

a) f'(x) = 0 khi x = 0, x = 1, x = 3.

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

b) Hàm số y = f(x) đồng biến trên khoảng (−∞; 0).

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

c) f'(x) > 0 khi x ∈ (0; 3).

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

d) Hàm số y = f(x) đồng biến trên (0; 3).

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

Lời giải:

a) Đ

b) S

c) S

d) Đ

Quan sát đồ thị hàm số y = f'(x), ta thấy f'(x) = 0 khi x = 0, x = 1, x = 3.

Ta có bảng biến thiên của hàm số y = f(x) như sau:

Cho hàm số y = f(x) có đạo hàm trên ℝ và đồ thị hàm số của y = f'(x) như Hình 8

Tại x = 1, f'(x) = 0 nên f'(x) > 0 trên các khoảng (0; 1) và (1; 3).

Hàm số nghịch biến trên các khoảng (−∞; 0) và (3; +∞).

Hàm số đồng biến trên khoảng (0; 3).

Lời giải SBT Toán 12 Bài 1: Tính đơn điệu của hàm số hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: