Trong 5 giây đầu tiên một chất điểm chuyển động theo phương trình s(t) = t^3 – 6t^2 + 14t + 1


Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình

Giải SBT Toán 12 Cánh diều Bài 1: Tính đơn điệu của hàm số

Bài 25 trang 15 SBT Toán 12 Tập 1: Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình

s(t) = t3 – 6t2 + 14t + 1,

trong đó t tính bằng giây và s tính bằng mét. Trong khoảng thời gian nào của 5 giây đầu tiên thì vận tốc tức thời của chất điểm tăng lên?

Lời giải:

Ta có: s(t) = t3 – 6t2 + 14t + 1⇒v(t) = s'(t) = 3t2 – 12t + 14.

v(t) = 3t2 – 12t + 14, ∀t ≥ 0.

Xét v'(t) = 6t – 12.

  v'(t) = 0 khi t = 2.

Ta có bảng xét dấu của v'(t):

Trong 5 giây đầu tiên một chất điểm chuyển động theo phương trình s(t) = t^3 – 6t^2 + 14t + 1

Vận tốc tức thời của chất điểm tăng lên trong khoảng thời gian từ 2 giây đến 5 giây.

Lời giải SBT Toán 12 Bài 1: Tính đơn điệu của hàm số hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: