Trong không gian Oxyz cho hai đường thẳng trang 37 SBT Toán 12 Tập 2


Giải sách bài tập Toán 12 Bài tập cuối chương 5 - Kết nối tri thức

Bài 5.39 trang 37 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng:

∆: x=2+3ty=1+2tz=1+t và ∆': x=1+sy=2sz=3+2s.

a) Xét vị trí tương đối của hai đường thẳng ∆ và ∆'.

b) Tính côsin của góc giữa hai đường thẳng ∆ và ∆'.

c) Viết phương trình đường thẳng d đi qua A(−3; 2; 2) và song song với đường thẳng ∆.

Lời giải:

a) Đường thẳng ∆ đi qua A(2; 1; −1) và nhận vectơ uΔ = (3; 2; 1) làm vectơ chỉ phương.

Đường thẳng ∆' đi qua B(−1; 2; 3) và nhận vectơ uΔ' = (1; −1; 2) làm vectơ chỉ phương.

Ta có: uΔ,uΔ' = (5; −5; −5) và AB = (−3; 1; 4) nên uΔ,uΔ'.AB = −40 ≠ 0.

Hai đường thẳng ∆ và ∆' chéo nhau.

b) Ta có: cos(∆, ∆') = cosuΔ,uΔ'=uΔ.uΔ'uΔ.uΔ'

                              =3.1+2.1+1.232+22+12.12+12+22 = 2114.

c) Đường thẳng d song song với đường thẳng ∆ nên nhận uΔ = (3; 2; 1) làm vectơ chỉ phương.

Phương trình đường thẳng d là: x+33=y22=z21.

Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 5 hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: