Trong không gian Oxyz cho hai đường thẳng trang 38 SBT Toán 12 Tập 2


Giải sách bài tập Toán 12 Bài tập cuối chương 5 - Kết nối tri thức

Bài 5.42 trang 38 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho hai đường thẳng:

∆: x=3+2ty=2+tz=1+3t và ∆': x+23=y32=z12.

a) Chứng minh rằng hai đường thẳng ∆ và ∆' chéo nhau.

b) Viết phương trình mặt phẳng (P) chứa ∆và song song với đường thẳng ∆'.

Lời giải:

a) Đường thẳng ∆ đi qua A(3; −2; 1) và nhận vectơ uΔ = (2; 1; 3) làm vectơ chỉ phương.

Đường thẳng ∆' đi qua B(−2; 3; 1) và nhận vectơ uΔ' = (3; 2; −2) làm vectơ chỉ phương.

Ta có: AB = (−5; 5; 0) và

uΔ,uΔ'=1322;3223;2132 = (−8; 13; 1) ≠ 0

uΔ,uΔ'.AB = −5.(−8) + 5.13 + 0.1 = 105 ≠ 0.

Do đó, hai đường thẳng ∆ và ∆' chéo nhau.

b) Mặt phẳng (P) nhận vectơ n = uΔ,uΔ' = (−8; 13; 1) làm vectơ pháp tuyến và mặt phẳng (P) đi qua điểm A.

Mặt phẳng (P) có phương trình là: −8(x – 3) + 13(y + 2) +1(z – 1) = 0

⇔ −8x + 13y + z + 49 = 0

⇔ 8x – 13y – z – 49 = 0.

Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 5 hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: