Bài 7.17 trang 53 Toán 11 Tập 2 - Kết nối tri thức


Giải Toán 11 Bài 25: Hai mặt phẳng vuông góc - Kết nối tri thức

Bài 7.17 trang 53 Toán 11 Tập 2: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.

a) Tính độ dài đường chéo của hình lập phương.

b) Chứng minh rằng (ACC'A')  (BDD'B').

c) Gọi O là tâm của hình vuông ABCD. Chứng minh rằng COC'^ là một góc phẳng của góc nhị diện [C, BD, C']. Tính (gần đúng) số đo của các góc nhị diện [C, BD, C'], [A, BD,C'].

Lời giải:

Bài 7.17 trang 53 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Vì ABCD.A'B'C'D' là hình lập phương nên có các mặt là hình vuông.

Xét tam giác ABC vuông tại B, có AC=AB2+BC2=a2+a2=a2.

Vì AA' (ABCD) nên AA'  AC.

Xét tam giác A'AC vuông tại A, có A'C=AA'2+AC2=a2+2a2=a3.

Vậy đường chéo của hình lập phương có độ dài là a3.

b) Vì AA' (ABCD) nên AA'  BD.

Vì ABCD là hình vuông nên AC BD mà AA' BD, suy ra BD  (ACC'A').

Vì BD  (ACC'A') nên (ACC'A')  (BDD'B').

c) Vì BD (ACC'A') nên BD C'O mà CO BD (do AC  BD) nên COC'^là góc phẳng nhị diện của góc nhị diện [C, BD, C'].

Do ABCD là hình vuông nên O là trung điểm của AC, suy ra AO=OC=AC2=a22.

Xét tam giác C'CO vuông tại C, có tanC'OC^=CC'CO=aa22=2 C'OC^55°.

Vậy số đo của các góc nhị diện [C, BD, C'] khoảng 55°.

Vì AO  BD (do AC ⊥ BD), BD  C'O nên AOC'^ là góc phẳng nhị diện của góc nhị diện [A, BD,C'].

AOC'^+C'OC^=180°nên AOC'^=180°C'OC^180°55°=125°.

Vậy số đo góc nhị diện [A, BD,C'] khoảng 125°.

Lời giải bài tập Toán 11 Bài 25: Hai mặt phẳng vuông góc hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: