Bài 7.42 trang 65 Toán 11 Tập 2 - Kết nối tri thức
Giải Toán 11 Bài tập cuối chương 7 - Kết nối tri thức
Bài 7.42 trang 65 Toán 11 Tập 2: Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a, AA' (ABCD) và = 60o.
a) Tính thể tích của khối hộp ABCD.A'B'C'D'.
b) Tính khoảng cách từ A đến mặt phẳng (A'BD).
Lời giải:
a) Gọi O là giao điểm của AC và BD.
Vì hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a nên ABCD là hình thoi, suy ra AO = OC và AC BD.
Có SABD = .AO.BD = .CO.BD = SBCD. Do đó SABCD = 2SABD.
Mà SABD = .AB.AD.sin = .a.a.sin60o = . Do đó SABCD = .
Vậy .
b) Vì AO BD mà AA' (ABCD) nên AA' BD. Do đó BD (AOA').
Suy ra (A'BD) (AOA').
Kẻ AE A'O tại E. Vì (A'BD) (AOA'), (A'BD) (AOA') = A'O và AE A'O nên AE (A'BD). Do đó d(A, (A'BD)) = AE.
Xét tam giác ABD có AB = AD = a nên tam giác ABD là tam giác cân tại A mà nên tam giác ABD đều, suy ra BD = a mà BO = .
Xét tam giác AOB vuông tại O, có AO = = .
Vì AA' (ABCD) nên AA' AO hay tam giác A'AO vuông tại A.
Xét tam giác A'AO vuông tại A có
.
Vậy d(A, (A'BD)) = .
Lời giải bài tập Toán 11 Bài tập cuối chương 7 hay, chi tiết khác: