Bài 7.44 trang 65 Toán 11 Tập 2 - Kết nối tri thức


Giải Toán 11 Bài tập cuối chương 7 - Kết nối tri thức

Bài 7.44 trang 65 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB // CD và AB = BC = DA = a, CD = 2a. Biết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và SA = a2 . Tính theo a khoảng cách từ S đến mặt phẳng (ABCD) và thể tích của khối chóp S.ABCD.

Lời giải:

Bài 7.44 trang 65 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi O là giao điểm của AC và BD.

Vì hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) nên SO (ABCD).

Khi đó d(S, (ABCD)) = SO.

Kẻ AH DC tại H, BK DC tại K.

Khi đó ABKH là hình chữ nhật nên AB = HK = a.

Xét AHD và BKC có: AD = BC = a, AHD^=BKC^=90° , ADH^=BCK^ (do ABCD là hình thang cân).

Do đó AHD = BKC, suy ra DH = CK = DCHK2=2aa2=a2 ;

CH = HK + CK = a+a2=3a2.

Xét tam giác AHD vuông tại H, có AH = AD2DH2=a2a24=a32 .

Xét tam giác AHC vuông tại H, có AC = AH2+HC2=3a24+9a24=a3.

Vì AB // CD nên AOOC=ABCDAOOC=a2a=12AO=13AC=a33 .

Xét tam giác SOA vuông tại O, có SO = SA2AO2=2a2a23=a153 .

Khi đó d(S, (ABCD)) =a153 .

Ta có SABCD=12AB+CDAH=12a+2aa32=3a234 .

Vậy VS.ABCD=13SABCDSO=133a234a153=a34512=a354.

Lời giải bài tập Toán 11 Bài tập cuối chương 7 hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: