Cho hàm số y = f(x) có đạo hàm f'(x) = x(x – 1)^2(x + 2)^4 với mọi x ∈ ℝ


Giải sách bài tập Toán 12 Bài tập cuối chương 1 - Kết nối tri thức

Bài 1.54 trang 34 SBT Toán 12 Tập 1: Cho hàm số y = f(x) có đạo hàm f'(x) = x(x – 1)2(x + 2)4 với mọi x ∈ ℝ. Số điểm cực trị của hàm số đã cho là:

A. 0.

B. 1.

C. 2.

D. 3.

Lời giải:

Đáp án đúng là: B

Ta có: f'(x) = x(x – 1)2(x + 2)4 = 0

Suy ra x = 0 hoặc x = 1 hoặc x = −2.

Ta có bảng xét dấu như sau:

Cho hàm số y = f(x) có đạo hàm f'(x) = x(x – 1)^2(x + 2)^4 với mọi x ∈ ℝ

Vậy hàm số có 1 điểm cực trị.

Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 1 hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: