Cho hàm số y Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m lớn hơn 0


Giải sách bài tập Toán 12 Bài tập cuối chương 1 - Kết nối tri thức

Bài 1.66 trang 36 SBT Toán 12 Tập 1: Cho hàm số y=mx2+2m1x1x+2 với m là tham số.

a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m > 0.

b) Khảo sát và vẽ đồ thị (H) của hàm số đã cho với m = 1.

c) Giả sử ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại điểm M ∈ (H) bất kì. Chứng minh rằng nếu ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại A và B thì M luôn là trung điểm của đoạn AB.

Lời giải:

a) Tập xác định: D = ℝ\{−2}.

Ta có: y'=mx2+4mx+4m1x+22

           y' = 0 ⇔ mx2 + 4mx + 4m – 1 = 0

Xét ∆' = 4m2 – m(4m – 1) = 4m2 – 4m2 + m = m.

Với m > 0 thì ta được y' = 0 là phương trình bâc hai có hai nghiệm phân biệt x1, x2.

Bảng biến thiên của hàm số như sau:

Cho hàm số y trang 36 SBT Toán 12 Tập 1

Vậy hàm số luôn có cực đại, cực tiểu với mọi m > 0.

b) Với m = 1, ta có: y = x2+x1x+2

Tập xác định: D = ℝ\{−2}.

Ta có: y'=x2+4x+3x+22

          y' = 0 ⇔ x2 + 4x + 3 = 0 ⇔ x = −3 hoặc x = −1.

Ta có: limx+y=+;limxy= .

          limx2+y=+;limx2y=.

Do đó, đồ thị hàm số nhận đường thẳng x = −2 làm tiệm cận đứng.

Ta có: y = x2+x1x+2 = x – 1 + 1x+2 .

Suy ra limx+yx1=limx+1x+2=0

Do đó, đường thẳng y = x – 1 là tiệm cận xiên của đồ thị hàm số.

Ta có bảng biến thiên như sau:

Cho hàm số y Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m lớn hơn 0

Đồ thị của hàm số như sau:

Cho hàm số y Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m lớn hơn 0

c) Lấy Mt;t2+t1t+2  ∈ (H) bất kì.

Phương trình tiếp tuyến của đồ thị (H) tại M là:

d: y = y'(t)(x – t) + y(t)

    y = t2+4t+3t+22xt+t2+t1t+2 .

Tiếp tuyến d cắt tiệm cận đứng tại điểm A 2;3t+4t+2.

Tiếp tuyến d cắt tiệm cận xiên tại điểm B(2t + 2; 2t + 1).

Ta có: xA+xB=2t=2xMyA+yB=(2t+1)3t+4t+2=2t2+2t2t+2=2yM .

Vậy M là trung điểm của đoạn AB.

Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 1 hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: