Cho hàm số y = (x^2 +mx + 1)/(x+m). Hàm số đạt cực đại tại x = 2 khi
Giải sách bài tập Toán 12 Bài tập cuối chương 1 - Kết nối tri thức
Bài 1.55 trang 34 SBT Toán 12 Tập 1: Cho hàm số y=x2+mx+1x+m . Hàm số đạt cực đại tại x = 2 khi
A. m = −1.
B. m = −3.
C. m ∈ {−3; −1}.
D. m ∈∅.
Lời giải:
Đáp án đúng là: A
Tập xác định: D = ℝ\{−m}.
Ta có: y' = (x+m+1)(x+m−1)(x+m)2
y' = 0 ⇔ (x+m+1)(x+m−1)(x+m)2 = 0 ⇔ x = −m – 1
hoặc x = 1 – m.
Nhận thấy, với mọi m luôn có −m – 1 < 1 – m.
Ta có bảng biến thiên như sau:
Để hàm số đạt cực đại tại x = 2 thì −m – 1 = 2 hay m = −1.
Vậy m = −1.
Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 1 hay khác:
Bài 1.52 trang 33 SBT Toán 12 Tập 1: Hàm số nào dưới đây nghịch biến trên tập xác định của nó? ....
Bài 1.56 trang 34 SBT Toán 12 Tập 1: Cho hàm số y=e−x22 có đồ thị (C). Xét các mệnh đề sau: ....
Bài 1.58 trang 34 SBT Toán 12 Tập 1: Cho hàm số y=2x2−4x+2x2−6x+5. Mệnh đề nào sau đây là đúng? ....