Hoạt động 7 trang 67 Toán 10 Tập 1 Cánh diều
Cho tam giác ABC có BC = a, AC = b, AB = c, . Kẻ đường cao BH
Giải Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0 đến 180. Định lý côsin và định lý sin trong tam giác
Hoạt động 7 trang 67 Toán lớp 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, AB = c, . Kẻ đường cao BH
Cho α là góc tù. Chứng minh:
a) HC = AC + AH và BC2 = AB2 + AC2 + 2 AH . AC;
b) a2 = b2 + c2 – 2bc cos α.
Lời giải:
a) Do α là góc tù nên A nằm giữa H và C. Do đó: HC = AC + AH.
Xét các tam giác vuông BHC và AHB, áp dụng định lí Pythagore, ta có:
BC2 = BH2 + HC2 = BH2 + (AC + AH)2
= (BH2 + AH2) + AC2 + 2AH . AC
= AB2 + AC2 + 2AH . AC.
b) Xét tam giác AHB vuông tại H, ta có:
AH = AB cos(180° – α) = – c cos α.
Do đó BC2 = AB2 + AC2 + 2AH . AC = b2 + c2 – 2bc cos α.
Vậy a2 = b2 + c2 – 2bc cos α.
Lời giải bài tập Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°. Định lý côsin và định lý sin trong tam giác hay, chi tiết khác:
Hoạt động 8 trang 68 Toán lớp 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, . Kẻ đường cao BH ....
Luyện tập 2 trang 68 Toán lớp 10 Tập 1: Cho tam giác ABC có AB = 5, AC = 6, BC = 7. Tính cos A. ....