Hoạt động 8 trang 68 Toán 10 Tập 1 Cánh diều


Cho tam giác ABC có BC = a, AC = b, . Kẻ đường cao BH.

Giải Toán lớp 10 Bài 1: Giá trị lượng giác của một góc từ 0 đến 180. Định lý côsin và định lý sin trong tam giác

Hoạt động 8 trang 68 Toán lớp 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, BAC^=α . Kẻ đường cao BH.

Cho α là góc vuông. Chứng minh a2 = b2 + c2 – 2bc cos α. 

Lời giải:

Hoạt động 8 trang 68 Toán 10 Tập 1 Cánh diều

Do α = 90° ⇒ cos α = cos 90° = 0 

⇒ 2bc cos α = 2 bc cos 90° = 0

Tam giác ABC vuông tại A (do α = 90°), áp dụng định lí Pythagore ta có:

BC2 = AB2 + AC2 = c2 + b2 – 0 = b2 + c2 – 2bc cos α.

Vậy a2 = b2 + c2 – 2bc cos α.

Lời giải bài tập Toán 10 Bài 1: Giá trị lượng giác của một góc từ 0° đến 180°. Định lý côsin và định lý sin trong tam giác hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: