X

Toán 9 Kết nối tri thức

Câu hỏi trang 77 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9


Giải Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng - Kết nối tri thức

Câu hỏi trang 77 Toán 9 Tập 1:

1. Hãy nêu cách giải tam giác ABC vuông tại A khi biết hai cạnh AB = c, AC = b hoặc AB = c, BC = a và không sử dụng định lí Pythagore (H.4.21).

Câu hỏi trang 77 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

2. Hãy nêu cách giải tam giác ABC vuông tại A khi biết cạnh góc vuông AB (hoặc cạnh huyền BC) và góc B.

Lời giải:

1. Trường hợp biết AB = c và AC = b, ta cần tính BC và các góc của tam giác.

Xét ∆ABC vuông tại A, sử dụng định nghĩa tỉ số lượng giác tan, ta có: tanB=ACAB=bc. Từ đó ta tính được góc B, khi đó ta tính được góc C thông qua định lí tổng ba góc của một tam giác.

Sau đó, sử dụng định lí 1, ta có AC = BC.sinB, suy ra BC=ACsinB=bsinB.

Trường hợp biết AB = c và BC = a, ta cần tính AC và các góc của tam giác.

Xét ∆ABC vuông tại A, sử dụng định nghĩa tỉ số lượng giác cos, ta có: cosB=ABBC=ca. Từ đó ta tính được góc B, khi đó ta tính được góc C thông qua định lí tổng ba góc của một tam giác.

Sau đó, sử dụng định lí 1, ta có AC = BC.sinB = a.sinB.

2.

Câu hỏi trang 77 Toán 9 Tập 1 | Kết nối tri thức Giải Toán 9

Trường hợp biết cạnh góc vuông AB và góc B, ta cần tính số đo góc C và các cạnh AC, BC:

Ta tính được góc C thông qua định lí tổng ba góc của một tam giác.

Xét ∆ABC vuông tại A, sử dụng định lí 1, ta có: AB = BC.cosB, suy ra BC=ABcosB.

Sử dụng định lí 2, ta có AC = AB.tanB.

Trường hợp biết biết cạnh huyền BC và góc B, ta cần tính số đo góc C và các cạnh AB, AC:

Ta tính được góc C thông qua định lí tổng ba góc của một tam giác.

Xét ∆ABC vuông tại A, sử dụng định lí 1, ta có: AB = BC.cosB và AC = BC.sinB.

Lưu ý: Ngoài cách giải đã nêu, ta cũng có nhiều cách giải khác cho bài toán.

Lời giải bài tập Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: