X

Toán 9 Kết nối tri thức

Mở đầu trang 74 Toán 9 Tập 2 | Kết nối tri thức Giải Toán 9


Để đo chiều cao của một toà lâu đài (H.4.11), người ta đặt giác kế thẳng đứng tại điểm M. Quay ống ngắm của giác kế sao cho nhìn thấy đỉnh P’ của toà lâu đài dưới góc nhọn α. Sau đó, đặt giác kế thẳng đứng tại điểm N, NM = 20 m, thì nhìn thấy đỉnh P’ dưới góc nhọn β (β < α). Biết chiều cao giác kế là 1,6 m, hãy tính chiều cao của toà lâu đài.

Giải Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng - Kết nối tri thức

Mở đầu trang 74 Toán 9 Tập 2: Để đo chiều cao của một toà lâu đài (H.4.11), người ta đặt giác kế thẳng đứng tại điểm M. Quay ống ngắm của giác kế sao cho nhìn thấy đỉnh P’ của toà lâu đài dưới góc nhọn α. Sau đó, đặt giác kế thẳng đứng tại điểm N, NM = 20 m, thì nhìn thấy đỉnh P’ dưới góc nhọn β (β < α). Biết chiều cao giác kế là 1,6 m, hãy tính chiều cao của toà lâu đài.

Mở đầu trang 74 Toán 9 Tập 2 | Kết nối tri thức Giải Toán 9

Lời giải:

Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:

Xét ∆M’P’H vuông tại H, theo định lí 2, ta có: M’H = P’H.cotα.

Xét ∆N’P’H vuông tại H, theo định lí 2, ta có: N’H = P’H.cotβ.

Mà N’H = N’M’ + M’H = MN + M’H

Do đó P’H.cotβ = MN + P’H.cotα.

Suy ra P’H.(cotβ – cotα) = MN nên P'H=MNcotβcotα=20cotβcotα.

Vì vậy, P'P=P'H+HP=20cotβcotα+1,6 (m).

Vậy chiều cao của tòa nhà là P'P=20cotβcotα+1,6 (m).

Lời giải bài tập Toán 9 Bài 12: Một số hệ thức giữa cạnh, góc trong tam giác vuông và ứng dụng hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác: