Đề thi Học kì 1 Toán lớp 9 có đáp án (15 đề) năm 2023
Đề thi Học kì 1 Toán lớp 9 có đáp án (15 đề) năm 2023
Haylamdo biên soạn và sưu tầm Đề thi Học kì 1 Toán lớp 9 có đáp án (15 đề) năm 2023 được tổng hợp chọn lọc từ đề thi môn Toán 9 của các trường trên cả nước sẽ giúp học sinh có kế hoạch ôn luyện từ đó đạt điểm cao trong các bài thi Toán lớp 9.
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2023
Môn: Toán 9
Thời gian làm bài: 90 phút
Bài 1 (2,0 điểm) : Cho hai biểu thức với x ≥ 0; x ≠ 1
a) Tính giá trị của biểu thức A khi
b) Rút gọn biểu thức B
c) Tìm giá trị lớn nhất của biểu thức
Bài 2 (3,0 điểm) : Cho hàm số y = mx + 1 (1) (với m là tham số, m ≠ 0)
a) Tìm m để đồ thị hàm số (1) đi qua điểm M(-1; -1). Với m vừa tìm được, vẽ đồ thị hàm số (1) trên mặt phẳng tọa độ Oxy
b) Tìm m để đồ thị hàm số (1) song song với đường thẳng (d): y = (m2 – 2)x + 2m + 3.
c) Tìm m để khoảng cách từ gốc tọa độ O đến đồ thị hàm số (1) bằng
Bài 3 (4,0 điểm) : Cho đường tròn (O; R) cố định. Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của OM và AB.
a) Chứng minh OM vuông góc với AB và OH.OM = R2
b) Từ M kẻ cát tuyến MNP với đường tròn (N nằm giữa M và P), gọi I là trung điểm của NP (I khác O). Chứng minh 4 điểm A, M, O, I cùng thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA và MB theo thứ tự ở C và D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt tia MA và MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MEF nhỏ nhất.
Bài 5 (0,5 điểm) :
Cho một mảnh giấy hình vuông ABCD cạnh 6cm. Gọi E, F lần lượt là hai điểm nằm trên cạnh AB và BC sao cho AE = 2cm, BF = 3cm. Bạn Nam muốn cắt một hình thang EFGH (như hình bên) sao cho hình thang đó có diện tích nhỏ nhất. Xác định vị trí của H trên cạnh AD, để bạn Nam có thể thực hiện mong muốn của mình?
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2023
Môn: Toán 9
Thời gian làm bài: 90 phút
Bài 1 (2,0 điểm) :
a) Rút gọn biểu thức:
b) Giải phương trình:
Bài 2 (2,0 điểm) : Cho hai biểu thức
a) Tính giá trị của biểu thức A khi x = 25
b) Rút gọn biểu thức B
c) Đặt P = A.B. Tìm giá trị nguyên của x để P < 1
Bài 3 (2,0 điểm) : Cho hàm số y = (2 – m)x + m + 1 (với là tham số và m khác 2) có đồ thị là đường thẳng (d).
a) Tìm m để đồ thị hàm số đi qua điểm A(-1;5); vẽ đồ thị hàm số với giá trị của m vừa tìm được
b) Tìm m để đường thẳng (d) cắt đường thẳng y = 3x – 1 tại điểm có hoành độ bằng 2, tìm tọa độ giao điểm.
Bài 4 (3,5 điểm) : Cho đường tròn (O;R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O;R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh rằng: DC // OA
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS
Bài 5 (0,5 điểm) : Giải phương trình:
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2023
Môn: Toán 9
Thời gian làm bài: 90 phút
Bài 1 (2,0 điểm) : Cho biểu thức
1) Tính giá trị của biểu thức A khi x = 16
2) Rút gọn biểu thức . với x > 0; x ≠ 4
3) Tìm các giá trị của x để
Bài 2 (2,0 điểm) :
1) Thực hiện phép tính:
2) Giải các phương trình sau:
Bài 3 (2,0 điểm) : Cho hàm số y = (m – 1)x + 3 có đồ thị là đường thẳng (d)
1) Vẽ đường thẳng (d) khi m = 2
2) Tìm m để đường thẳng (d) song song với đường thẳng y = 2x + 1
3) Tính khoảng cách từ gốc tọa độ đến đường thẳng được vẽ ở câu 1
Bài 4 (3,5 điểm) : Cho điểm E thuộc nửa đường tròn tâm O, đường kính MN. Kẻ tiếp tuyến tại N của nửa đường tròn tâm O, tiếp tuyến này cắt đường thẳng ME tại D.
1) Chứng minh rằng: ΔMEN vuông tại E. Từ đó chứng minh DE.DM = DN2
2) Từ O kẻ OI vuông góc với ME (I ∈ ME).
Chứng minh rẳng: 4 điểm O; I; D; N cùng thuộc một đường tròn.
3) Vẽ đường tròn đường kính OD, cắt nửa đường tròn tâm O tại điểm thứ hai là A. Chứng minh rằng: DA là tiếp tuyến của nửa đường tròn tâm O.
4) Chứng minh rằng:
Bài 5 (0,5 điểm) : Cho x, y là các số dương và
Tìm giá trị nhỏ nhất của biểu thức P = x + y
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2023
Môn: Toán 9
Thời gian làm bài: 90 phút
(Đề thi số 5)
Câu 1: có nghĩa khi:
A.x ≥ 3 B.x > 3 C.x < 3 D.x ≤ 3
Câu 2: Kết quả của phép tính là:
A.√3 - 2 B. 2 - √3 C. 1 D. Kết quả khác
Câu 3: khi đó x bằng:
A. 25 B. 9 C. – 25 D. – 9
Câu 4: Hai đường thẳng y = ax + 2 và y = 4x + 5 song song với nhau khi :
A. a = - 4 B. a ≠ 4 C. a = 4 D. a ≠ -4
Câu 5: Hàm số y = (m - 3)x + 3 nghịch biến khi m nhận giá trị:
A.m > 3 B.m < 3 C.m ≥ 3 D.m ≤ 3
Câu 6: Cho tam giác BDC vuông tại D, ∠B = 60o , BD = 3 cm. Độ dài cạnh DC bằng:
A.3 cm B.3√3 cm C.√3 cm D.12 cm
Câu 7: Đẳng thức nào sau đây là đúng:
A.sin 50o = cos 30o B.tan 40o = cotg 60o
C.cotg 50o = tan 45o D.sin 58o = cos 32o
Câu 8: Cho đoạn thẳng OI = 8 cm. Vẽ các đường tròn (O; 10cm); (I; 2cm). Hai đường tròn (O) và (I) có vị trí tương đối như thế nào với nhau?
A. (O) và (I) tiếp xúc trong với nhau
B. (O) và (I) tiếp xúc ngoài với nhau
C. (O) và (I) cắt nhau
D. (O) và (I) không cắt nhau
Phần tự luận (8 điểm)
Bài 1 (2,5 điểm) Cho biểu thức
a) Rút gọn P
b) Tính giá trị của P biết
c) Tìm m để có một giá trị x thỏa mãn :
P(√x - 2) + √x (m - 2x) - √x = m - 1
Bài 2 (2 điểm) Cho hàm số y =(m – 3)x + 2 có đồ thị là (d)
a) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng – 3. Khi đó (d) tạo với trục Ox một góc nhọn hay góc tù. Vì sao?
b) Vẽ đồ thị với m tìm được ở câu a.
c) Tìm m để (d) cắt hai trục tọa độ tạo thành một tam giác có diện tích bằng 4.
Bài 3 (3,5 điểm) Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
a) Chứng minh rằng AD + BE = DE
b) AC cắt DO tại M, BC cắt OE tại N. Tứ giác CMON là hình gì? Vì sao?
c) Chứng minh rằng OM.OD + ON.OE không đổi
d) AN cắt CO tại điểm H. Điểm H di chuyển trên đường nào khi C di chuyển trên nửa đường tròn (O; R).
Hướng dẫn giải
Phần trắc nghiệm (2 điểm)
1.D | 2.B | 3.A | 4.C |
5.B | 6.B | 7.D | 8.A |
Phần tự luận (8 điểm)
Bài 1
Để tồn tại 1 giá trị của x thỏa mãn đề bài thì: m = 2x + 1 phải thỏa mãn với x = 1
Thay x = 1 vào ta được: m = 2.1 + 1 = 3
Vậy m = 3 thỏa mãn đầu bài.
Bài 2 Cho hàm số y = (m – 3)x + 2 có đồ thị là (d)
a) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng – 3 khi:
0 = (m - 3).(-3) + 2 ⇔ 3m = 11 ⇔ m = 11/3
Khi đó (d) có phương trình là:
y = (11/3 - 3)x + 2 = 2/3 x + 2
Có hệ số a = 2/3 > 0
⇒ (d) tạo với trục Ox một góc nhọn
b) Tập xác định của hàm số R
Bảng giá trị
x | 0 | - 3 |
y = 2/3 x + 2 | 2 | 0 |
c) y = (m – 3)x + 2 (m ≠ 3)
Gọi A, B lần lượt là giao điểm của (d) và trục Ox, Oy và tam giác tạo thành là tam giác AOB vuông tại O
Bài 3
a) CE và EB là 2 tiếp tuyến cắt nhau tại E
⇒ EC = EB và CB ⊥ OE
Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D
⇒ DC = DA và AC ⊥ OD
Khi đó: AD + BE = DC + EC = DE
b) Xét tứ giác OMCN có:
∠(OMC) = 90o (AC ⊥ OD)
∠(ONC) = 90o (CB ⊥ OE)
∠(NCM) = 90o (AC ⊥ CB)
⇒ Tứ giác OMCN là hình chữ nhật
c) Xét tam giác DOC vuông tại C, CM là đường cao có:
OM.OD = OC2 = R2
Xét tam giác EOC vuông tại C, CN là đường cao có:
ON.OE = OC2 = R2
Khi đó: OM.OD + ON.OE = 2R2
Vậy OM.OD + ON.OE không đổi
d) Ta có: N là trung điểm của BC
⇒ AN là trung tuyến của ΔABC
CO cũng là trung tuyến của ΔABC
AN ∩ CO = H
⇒ H là trọng tâm ΔABC
Vậy khi C di chuyển trên nửa đường tròn (O) thì H di chuyển trên nửa đường tròn
(O; R/3)
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2023
Môn: Toán 9
Thời gian làm bài: 90 phút
(Đề thi số 6)
Bài 1: (1.5 điểm) Thực hiện các phép tính:
a) (√75 - 3√2 - √12)(√3 + √2)
Bài 2: (1.5 điểm) Giải phương trình
Bài 3: (1.5 điểm) Cho hàm số y = –2x + 3 có đồ thị (d1) và hàm số y = x – 1 có đồ thị (d2)
a) Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ.
b) Xác định hệ số a và b biết đường thẳng (d3): y = ax + b song song với (d2) và cắt (d1) tại điểm nằm trên trục tung.
Bài 4: (2 điểm) Cho biểu thức :
a) Thu gọn biểu thức A.
b) Tìm x nguyên để A nguyên.
Bài 5: (3.5 điểm) Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA = R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.
a) Chứng minh MD là tiếp tuyến của đường tròn (O).
b) Kẻ đường kính CE của đường tròn (O). Tính MC, DE theo R.
c) Chứng minh HA2 + HB2 + CD2/2 = 4R2
d) ME cắt đường tròn (O) tại F (khác E). Chứng minh: ∠(MOF) = ∠(MEH )
Đáp án và Hướng dẫn giải
Bài 1: (1.5 điểm)
a) (√75 - 3√2 - √12)(√3 + √2)
=(5√3 - 3√2 - 2√3)(√3 + √2)
=3(√3 - √2)(√3 + √2) = 3
Bài 2: (1.5 điểm)
⇔ x - 3 = 4
⇔ x = 7 (TM ĐKXĐ)
Vậy phương trình có nghiệm x = 7
Bài 3: (1.5 điểm)
a) Tập xác định của hàm số R
Bảng giá trị
x | 0 | 1 |
y = -2x + 3 | 3 | 1 |
x | 0 | 1 |
y = x – 1 | - 1 | 0 |
b) Do (d3 ) song song với đường thẳng (d2 ) nên (d3 ) có dạng: y = x + b (b ≠ -1)
(d1 ) cắt trục tung tại điểm (0; 3)
Do (d3 ) cắt (d1 ) tại điểm nằm trên trục tung nên ta có:
3 = 0 + b ⇔ b = 3
Vậy phương trình đường thẳng (d3 ) là y = x + 3
Bài 4: (2 điểm)
x + 2√x - 3 = x - √x + 3√x - 3 = √x (√x - 1) + 3(√x - 1) = (√x - 1)(√x + 3)
a) Với điểu kiện x ≥ 0; x ≠ 1 ta có:
b) Tìm x nguyên để A nguyên
⇔ √x + 3 ∈ Ư(11) ⇔ √x + 3 ∈ {-11; -1; 1; 11}
Do √x + 3 ≥ 3 nên √x + 3 = 11 ⇔ √x = 8 ⇔ x = 64
Vậy với x = 64 thì A nguyên
Bài 5: (3.5 điểm)
a) Xét tam giác COD cân tại O có OH là đường cao
⇒ OH cũng là tia phân giác ⇒ ∠(COM) = ∠(MOD)
Xét ΔMCO và ΔMOD có:
CO = OD
∠(COM) = ∠(MOD)
MO là cạnh chung
⇒ ΔMCO = ΔMOD (c.g.c)
⇒ ∠(MCO) = ∠(MDO)
∠(MCO) = 90o nên ∠(MDO) = 90o
⇒ MD là tiếp tuyến của (O)
b) Ta có: OM = OA + AM = R + R = 2R
Xét tam giác MCO vuông tại C, CH là đường cao có:
MO2 = MC2 + OC2
CH.OM = CM.CO
Lại có: CD = 2CH ⇒ CD = R√3
Tam giác CDE nội tiếp (O) có CE là đường kính nên ΔCDE vuông tại D
Theo định lí Py ta go ta có:
CE2 = CD2 + DE2
c) Ta có: ΔCOD cân tại O có OH là đường cao cũng là đường trung tuyến của tam giác
⇒ CH = HD = CD/2 ⇒ CH2 = DH2 = CD2 /4
Tam giác ACH vuông tại H có:
AH2 + CH2 = CA2 ⇒ AH2 + CD2/4 = CA2 (1)
Tam giác CHB vuông tại H có:
BH2 + CH2 = CB2 ⇒ BH2 + CD2/4 = CB2 (2)
Từ (1) và (2) ta có:
d) Ta có: ∠(CFE) = 90o (F thuộc đường tròn đường kính CE)
Lại có CF là đường cao nên MC2 = MF.ME
Tương tự, ta có: MC2 = MH.MO
⇒ ME.MF = MH.MO
⇒
Xét ΔMOF và ΔMEN có:
∠(FMO) chung
⇒ ΔMOF ∼ ΔMEN (c.g.c)
⇒ ∠(MOF) = ∠(MEH)
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2023
Môn: Toán 9
Thời gian làm bài: 90 phút
(Đề thi số 7)
Bài 1: (1.5 điểm) Thực hiện các phép tính:
Bài 2: (1.5 điểm) Cho hàm số y = 2x + 3 có đồ thị (d1) và hàm số y = – x có đồ thị (d2).
a) Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ giao điểm của (d1) và (d2) bằng phép toán.
Bài 3: (1.5 điểm) Cho biểu thức:
a) Thu gọn biểu thức A.
b) Tìm giá trị nhỏ nhất của A.
Bài 4: (2 điểm) Giải các phương trình:
Bài 5: (3.5 điểm) Cho đường tròn (O;R) và điểm M thuộc đường tròn (O). Đường trung trực của đoạn thẳng OM cắt đường tròn (O) tại A và B và cắt OM tại H.
a) Chứng minh H là trung điểm của AB và tam giác OMA đều.
b) Chứng minh tứ giác OAMB là hình thoi.
c) Tiếp tuyến tại A của (O) cắt tia OM tại C. Chứng minh CB = CA.
d) Đường thẳng vuông góc với OA tại O cắt BC tại N. Chứng minh MN là tiếp tuyến của đường tròn (O).
Đáp án và Hướng dẫn giải
Bài 1: (1.5 điểm)
= (√5 + 1)2 (3 - √5)
= (6 + 2√5)(3 - √5)
= 2(3 + √5) (3 - √5)
= 8
Bài 2: (1.5 điểm)
a) Tập xác định R
Bảng giá trị:
x | 0 | -1 |
y = 2x + 3 | 3 | 1 |
x | 0 | -1 |
y = - x | 0 | 1 |
Gọi (xo; yo ) là tọa độ giao điểm của d1 và d2
Khi đó ta có:
(yo = 2xo + 3 và yo = -xo
⇒ -xo = 2xo + 3 ⇔ 3xo = -3 ⇔ xo = -1
⇒ yo = -xo = 1
Vậy tọa độ giao điểm của d1 và d2 là (- 1; 1)
Bài 3: (1.5 điểm)
Vậy GTNN của biểu thức A là 0, đạt được khi x = 0
Bài 4: (2 điểm)
Bài 5: (3.5 điểm)
a) Chứng minh H là trung điểm của AB
Ta có OM vuông góc AB tại H (gt)
Vậy H là trung điểm của AB (đường kính vuông góc với một dây cung)
Chứng minh tam giác OAM đều:
Ta có: AM = AO (A là trung trực của OM)
và OA = OM = R
Suy ra AM = AO = OM
Vậy ΔOAM đều.
b) Chứng minh tứ giác OAMB là hình thoi.
Do H là trung điểm của AB (cmt)
H là trung điểm của OM
nên tứ giác OAMB là hình bình hành mà OM vuông góc AB.
Vậy tứ giác OAMB là hình thoi.
c) Xét ΔOAC và ΔOBC có:
OA = OB = R
∠(AOC) = ∠(BOC) (tính chất đường chéo hình thoi)
OC là cạnh chung
⇒ ΔOAC = ΔOBC (c.g.c)
⇒ AC = BC
d) Ta có: CA ⊥ OA (CA là tiếp tuyến của (O)
và ON ⊥ OA (gt)
⇒ CA // ON ⇒ ∠(CON) = ∠(ACO) (sole trong)
Mà ∠(ACO) = ∠(BCO) (ΔOAC = ΔOBC)
⇒ ∠(CON) = ∠(BCO) ⇒ ΔNCO cân tại N
Xét tam giác CAO vuông tại A có ∠(AOC) = 60o( ΔAMO đều) nên:
⇒ M là trung điểm của OC
ΔNCO cân tại N có NM là trung tuyến ⇒ NM cũng là đường cao
Hay NM là tiếp tuyến của (O)
Phòng Giáo dục và Đào tạo .....
Đề khảo sát chất lượng Học kì 1
Năm học 2023
Môn: Toán 9
Thời gian làm bài: 90 phút
(Đề thi số 8)
Bài 1: (1.5 điểm) Thực hiện các phép tính:
a) 4√24 - 3√54 + 5√6 - √150
Bài 2: (1.5 điểm) Vẽ trên cùng một mặt phẳng tọa độ Oxy đồ thị của các hàm số sau:
Xác định b để đường thẳng (d3 ) y = 2x + b cắt (d2 ) tại điểm có hoành độ và tung độ đối nhau.
Bài 3: (1.5 điểm) Giải phương trình:
Bài 4: (2 điểm) Cho biểu thức:
a) Thu gọn biểu thức M.
b) Tìm giá trị của x để M < – 1 .
Bài 5: (3.5 điểm) Cho đường tròn (O;R) và điểm M ở ngoài đường tròn sao cho OM=8/5 R . Kẻ các tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm), đường thẳng AB cắt OM tại K.
a) Chứng minh K là trung điểm của AB.
b) Tính MA, AB, OK theo R.
c) Kẻ đường kính AN của đường tròn (O). Kẻ BH vuông góc với AN tại H. Chứng minh MB.BN = BH.MO .
d) Đường thẳng MO cắt đường tròn (O) tại C và D (C nằm giữa O và M). Gọi E là điểm đối xứng của C qua K. Chứng minh E là trực tâm của tam giác ABD.
Đáp án và Hướng dẫn giải
Bài 1: (1.5 điểm)
a) 4√24 - 3√54 + 5√6 - √150
= 8√6 - 9√6 + 5√6 - 5√6
= -√6
Bài 2: (1.5 điểm)
a) Tập xác định của hàm số R
Bảng giá trị
x | 0 | 2 |
y = -1/2 x | 0 | - 1 |
y = 1/2 x + 3 | 3 | 4 |
b) Gọi A (m; - m) là tọa độ giao điểm của (d2 ) và (d3)
Khi đó:
-m = 1/2 m + 3 ⇔ 3/2 m = 3 ⇔ m = 2
Vậy tọa độ giao điểm của d2 và d3 là (2; -2)
⇒ -2 = 2.2 + b ⇔ b = -6
Vậy b = - 6
Bài 3: (1.5 điểm)
Vậy phương trình có nghiệm x = 0
Bài 4: (2 điểm)
a) Rút gọn M
Bài 5: (3.5 điểm)
a) Ta có:
MA = MB ( tính chất 2 tiếp tuyến cắt nhau)
OA = OB ( cùng bằng bán kính đường tròn (O)
⇒ OM là đường trung trực của AB
OM ∩ AB = K ⇒ K là trung điểm của AB
b) Tam giác MAO vuông tại A, AK là đường cao có:
c) Ta có: ∠(ABN ) = 90o(B thuộc đường tròn đường kính AN)
⇒ BN // MO ( cùng vuông góc với AB)
Do đó:
∠(AOM) = ∠(ANB) (đồng vị))
∠(AOM) = ∠(BOM) (OM là phân giác ∠(AOB))
⇒ ∠(ANB) = ∠(BOM)
Xét ΔBHN và ΔMBO có:
∠(BHN) = ∠(MBO ) = 90o
∠(ANB) = ∠(BOM)
⇒ ΔBHN ∼ ΔMBO (g.g)
Hay MB. BN = BH. MO
d) Ta có:
K là trung điểm của CE (E đối xứng với C qua AB)
K là trung điểm của AB
AB ⊥ CE (MO ⊥ AB)
⇒ Tứ giác AEBC là hình thoi
⇒ BE // AC
Mà AC ⊥ AD (A thuộc đường tròn đường kính CD)
Nên BE ⊥ AD và DK ⊥ AB
Vậy E là trực tâm của tam giác ADB