Cho tam giác ABC với A(1; –1), B(3; 5), C(–2; 4)


Cho tam giác ABC với A(1; –1), B(3; 5), C(–2; 4).

Sách bài tập Toán 10 Kết nối tri thức Bài tập cuối chương 7

Bài 7.55 trang 49 Sách bài tập Toán lớp 10 Tập 2: Cho tam giác ABC với A(1; –1), B(3; 5), C(–2; 4).

a) Viết phương trình tham số của đường thẳng AB.

b) Viết phương trình đường cao AH của tam giác ABC.

c) Tính khoảng cách từ điểm A đến đường thẳng BC.

d) Tính sin của góc giữa hai đường thẳng AB và AC.

Lời giải:

a)

Ta có AB=2;6 là một vectơ chỉ phương của đường thẳng AB nên vectơ u=1;3 cũng là một vectơ chỉ phương của AB.

Đường thẳng AB đi qua điểm A(1; –1) và nhận u=1;3 là một vectơ chỉ phương có phương trình tham số là Cho tam giác ABC với A(1; –1), B(3; 5), C(–2; 4)

b)

Do AH vuông góc với BC nên BC=-5;-1 là một vectơ pháp tuyến của đường cao AH.

Đường cao AH đi qua điểm A(1; –1) nhận n=-BC=5;1 là một vectơ pháp tuyến có phương trình tổng quát là:

5(x – 1) + 1(y + 1) = 0

⇔ 5x – 5 + y + 1 = 0

⇔ 5x + y – 4 = 0.

c)

Đường thẳng BC nhận vectơ BC=-5;-1 là một vectơ chỉ phương nên BC nhận n'=1;-5 là một vectơ pháp tuyến.

Do đó phương trình đường thẳng BC là:

1(x – 3) – 5(y – 5) = 0

⇔ x – 3 – 5y + 25 = 0

⇔ x – 5y + 22 = 0.

Khoảng cách từ điểm A(1; –1) đến đường thẳng BC là

Cho tam giác ABC với A(1; –1), B(3; 5), C(–2; 4)

d)

Gọi α là góc giữa hai đường thẳng AB và AC có hai vectơ chỉ phương lần lượt là: AB=2;6,AC=-3;5

Khi đó

Cho tam giác ABC với A(1; –1), B(3; 5), C(–2; 4)

Do α là góc giữa hai đường thẳng nên sinα > 0.

Lại có sin2α + cos2α = 1.

sinα=1-cos2α=785

Xem thêm các bài giải sách bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác: