Lập phương trình chính tắc của parabol (P) biết rằng, (P) đi qua điểm A(2; 4)
Lập phương trình chính tắc của parabol (P) biết rằng, (P) đi qua điểm A(2; 4). Khi đó hãy tìm điểm M thuộc (P) và cách tiêu điểm của (P) một khoảng bằng 5.
Sách bài tập Toán 10 Kết nối tri thức Bài tập cuối chương 7
Bài 7.60 trang 50 Sách bài tập Toán lớp 10 Tập 2: Lập phương trình chính tắc của parabol (P) biết rằng, (P) đi qua điểm A(2; 4). Khi đó hãy tìm điểm M thuộc (P) và cách tiêu điểm của (P) một khoảng bằng 5.
Lời giải:
Phương trình chính tắc của (P) có dạng y2 = 2px.
Do (P) đi qua điểm A(2; 4) nên ta có: 42 = 2p.2 ⇔ p = 4 .
Vậy phương trình chính tắc của (P) là: y2 = 8x với tiêu điểm F(2; 0).
Ta còn viết phương trình (P) dưới dạng: .
Ta có:
Do điểm M thuộc (P) nên toạ độ của điểm M có dạng
Từ giả thiết MF = 5 ta suy ra:
MF2 = 25
Đặt t2 = X (X ≥ 0) ta có:
(*) ⇔
Với X = 24 ⇔
Vậy có hai điểm M thoả mãn là .