Bài 9 trang 45 Toán lớp 10 Tập 2 Chân trời sáng tạo | Giải Toán 10
Tính góc giữa hai vectơ và trong các trường hợp sau:
Giải Toán lớp 10 Bài 1: Toạ độ của vectơ
Bài 9 trang 45 Toán lớp 10 Tập 2: Tính góc giữa hai vectơ →a và →b trong các trường hợp sau:
a) →a= (2; -3), →b = (6; 4);
b) →a= (3; 2), →b = (5; -1);
c) →a= (-2; -2√3), →b = (3; √3).
Lời giải:
a) Áp dụng công thức tính góc giữa hai vectơ →a và →b, ta có:
cos(→a; →b) = →a.→b(→a).(→b)=2.6+(−3).4√22+(−3)2.√62+42=0
⇒ (→a; →b) = 90°
Vì vậy góc giữa hai vectơ →a và →b bằng 90°.
b) Áp dụng công thức tính góc giữa hai vectơ →a và →b, ta có:
cos(→a; →b) = →a.→b(→a).(→b)=3.5+(−1).2√32+22.√52+(−1)2=13√13.√26=1√2
⇒ (→a; →b) = 45°
Vì vậy góc giữa hai vectơ →a và →b bằng 45°.
c) Áp dụng công thức tính góc giữa →a= (-2; -2√3), →b = (3; √3), ta được:
cos(→a; →b) = →a.→b(→a).(→b)=(−2).3+(−2√3).√3√(−2)2+(−2√3)2.√32+(√3)2=−128.√3=−√32
⇒ (→a; →b) = 150°
Vì vậy góc giữa hai vectơ →a và →b bằng 150°.
Lời giải bài tập Toán 10 Bài 1: Toạ độ của vectơ hay, chi tiết khác:
Thực hành 2 trang 41 Toán lớp 10 Tập 2: Cho hai vectơ →m = (-6; 1) và →n = (0; 2) ....
Hoạt động khám phá 5 trang 41 Toán lớp 10 Tập 2: Cho hai điểm A (xA; yA), B (xB; yB) ....