Lý thuyết Toán 8 Cánh diều Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
Haylamdo biên soạn và sưu tầm với tóm tắt lý thuyết Toán lớp 8 Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.
Lý thuyết Toán 8 Cánh diều Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
A. Lý thuyết
1. Phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích những đa thức.
Ví dụ: 3x2 + 3x = 3x(x + 1).
2. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử
2.1. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng trực tiếp hằng đẳng thức
Sử dụng các hằng đẳng thức để phân tích đa thức
A2 – B2 = (A – B)(A + B)
A3 + B3 = (A + B)(A2 – AB + B2);
A3 – B3 = (A – B)(A2 + AB + B2).
Ví dụ: 4 – 9x2 = 22 – (3x)2 = (2 – 3x)(2 + 3x)
8 – x3 = 23 – x3 = (2 – x)(22 + 2 . x + x2)
= (2 + x)(4 + 2x + x2)
2.2. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng đằng đẳng thức thông qua nhóm hạng tử và đặt nhân tử chung
Để phân tích đa thức thành nhân tử ta làm như sau
- Nhóm các hạng tử thành nhóm
- Dùng hằng đẳng thức, đặt nhân tử chúng để viết nhóm thành tích.
Ví dụ: x2 + 2xy + y2 – x – y
= (x2 + 2xy + y2) – (x + y)
= (x + y)2 – (x + y)
= (x + y)(x + y – 1)
B. Bài tập luyện tập
Bài 1. Phân tích mỗi đa thức sau thành nhân tử:
a) 8x3 – 64 ;
b) x2 – 25 – 4xy + 4y2.
Hướng dẫn giải
a) 8x3 – 64 = (2x)3 – 43 = (2x – 4)(4x2 + 8x + 16).
b) x2 – 25 – 4xy + 4y2 = (x2 – 4xy + 4y2) – 25
= (x – 2y)2 – 25 = (x – 2y)2 – 52
= (x – 2y – 5)(x – 2y + 5).
Bài 2. Tính giá trị biểu thức sau:
A = x2y2 + 2xyz + z2 biết xy + z = 0.
Hướng dẫn giải
A = x2y2 + 2xyz + z2
= (xy)2 + 2xyz + z2 = (xy + z)2.
Thay xy + z = 0 vào biểu thức A ta được:
A = 02 = 0.
Vậy khi xy + z = 0 giá trị của biểu thức A bằng 0.
Vậy với xy + z = 0 thì A = 0.
Bài 3. Tìm x, biết:
a) x2 – 4x = 0;
b) (x – 3)2 + 3 – x = 0.
Hướng dẫn giải
a) x2 – 4x = 0
x . x – 4 . x = 0
x . (x – 4) = 0
x = 0 hoặc x – 4 = 0
x = 0 hoặc x = 4
Vậy x {0; 4}.
b) (x – 3)2 + 3 – x = 0
(x – 3)(x – 3) + ( –x + 3) = 0
(x – 3)(x – 3) – (x – 3) . 1 = 0
(x – 3)(x – 3 – 1) = 0
(x – 3)(x – 4) = 0
x – 3 = 0 hoặc x – 4 = 0
x = 3 hoặc x = 4
Vậy x {3; 4}.