X

Lý thuyết Toán 8 Cánh diều

Lý thuyết tổng hợp Toán 8 Cánh diều Chương 1


Tổng hợp lý thuyết Toán 8 Chương 1 Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.

Lý thuyết tổng hợp Toán 8 Cánh diều Chương 1

A. Lý thuyết

1. Đơn thức nhiều biến

1.1. Khái niệm

Đơn thức nhiều biến (hay đơn thức) là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.

1.2. Đơn thức thu gọn

Đơn thức thu gọn là đơn thức chỉ gồm tích của một số với các biến, mà mỗi biến đã được nâng lên lũy thừa với số mũ nguyên dương và chỉ được viết một lần

Số nói trên gọi là hệ số, phần còn lại là phần biến của đơn thức thu gọn.

Chú ý: Ta cũng coi một số là đơn thức thu gọn.

Khi nói đến đơn thức, nếu không nói gì thêm, ta hiểu đó là đơn thức thu gọn.

1.3. Đơn thức đồng dạng

Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.

1.4. Cộng trừ các đơn thức đồng dạng

Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.

2. Đa thức nhiều biến

2.1. Khái niệm

Đa thức nhiều biến (hay đa thức) là một tổng của những đơn thức.

Chú ý: Mỗi đơn thức được coi là một đa thức.

2.2. Thu gọn đa thức

Thu gọn đa thức là làm cho trong đa thức đó không còn hai đơn thức nào đồng dạng.

2.3. Giá trị của đa thức

Để tính giá trị của một đa thức tại những giá trị cho trước của các biến, ta thay những giá trị cho trước đó vào biểu thức xác định đa thức rồi thực hiện các phép tính.

3. Cộng hai đa thức

Để cộng hai đa thức theo hàng ngang, ta có thể làm như sau:

- Viết tổng hai đa thức theo hàng ngang;

- Nhóm các đơn thức: đồng dạng với nhau

- Thực hiện phép tính trong từng nhóm, rồi cộng các kết quả với nhau.

4. Trừ hai đa thức

Để trừ hai đa thức P cho đa thức Q theo hàng ngang, ta có thể làm như sau:

- Viết P – Q theo hàng ngang, trong đó đa thức Q được đặt trong dấu ngoặc;

- Sau khi bỏ dấu ngoặc và đổi dấu mỗi đơn của đa thức Q, nhóm các đơn thức đồng dạng với nhau;

- Thực hiện phép tính trong từng nhóm, rồi cộng các kết quả với nhau.

5. Nhân hai đa thức

5.1. Nhân hai đơn thức

Để nhân hai đơn thức nhiều biến ta có thể làm như sau:

- Nhân các hệ số với nhau và nhân các phần biến với nhau:

- Thu gọn đơn thức nhận được ở tích.

5.2. Nhân đơn thức với đa thức

Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng đơn thức của đa thức rồi cộng các kết quả với nhau.

5.3. Nhân hai đa thức

Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các kết quả với nhau/

6. Chia đa thức cho đơn thức

6.1. Phép chia hết một đơn thức cho một đơn thức

- Đơn thức A chia hết cho đơn thức B (B ≠ 0) khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

- Muốn chia đơn thức A cho đơn thức B (trường hợp A chia hết cho B), ta có thể làm như sau:

+ Chia hệ số của đơn thức A cho hệ số của đơn thức B;

+ Chia lũy thừa của từng biến trong đơn thức A cho từng lũy thừa của cùng biến đó trong B;

+ Nhân các kết quả vừa tìm được với nhau.

6.2. Phép chia hết một đa thức cho một đơn thức

- Đa thức A chia hết cho đơn thức B (B ≠ 0) khi mỗi đơn thức của A chia hết cho B.

- Muốn chia đa thức A cho đơn thức B (trường hợp A chia hết cho B), ta chia mỗi đơn thức của A cho B rồi cộng các kết quả với nhau.

7. Hằng đẳng thức

Nếu hai biểu thức P và Q nhận giá trị nhưu nhau với mọi giá trị của biến thì ta nói  P = Q là một đồng nhất thức hay một hằng đẳng thức

8. Hằng đẳng thức đáng nhớ

8.1. Bình phương của một tổng, hiệu

Với hai biểu thức A, B tùy ý, ta có:

(A + B)2 = A2 + 2AB + B2

(A – B)2 = A2 – 2AB + B2

8.2. Hiệu hai bình phương

Với hai biểu thức A, B tùy ý, ta có:

A2 – B2 = (A – B)(A + B)

8.3. Lập phương của một tổng, một hiệu

Với hai biểu thức A, B tùy ý, ta có:

(A + B)3 = A3 + 3A2B + 3AB2 + B3

(A – B)2 = A3 – 3A2B + 3AB2 – B3

8.4. Tổng, hiệu hai lập phương

A3 + B3 = (A + B)(A2 – AB + B2);

A3 – B3 = (A – B)(A2 + AB + B2).

9. Phân tích đa thức thành nhân tử

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích những đa thức.

10. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử

10.1. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng trực tiếp hằng đẳng thức

Sử dụng các hằng đẳng thức để phân tích đa thức

A2 – B2 = (A – B)(A + B)

A3 + B3 = (A + B)(A2 – AB + B2);

A3 – B3 = (A – B)(A2 + AB + B2).

10.2. Phân tích đa thức thành nhân tử bằng phương pháp vận dụng đằng đẳng thức thông qua nhóm hạng tử và đặt nhân tử chung

Để phân tích đa thức thành nhân tử ta làm như sau

- Nhóm các hạng tử thành nhóm

- Dùng hằng đẳng thức, đặt nhân tử chúng để viết nhóm thành tích.

B. Bài tập luyện tập

Bài 1. Thu gọn các đơn thức sau:

a) 12xy5x3y2z;

b) 12x2y3y3z.

Hướng dẫn giải

a) 12xy5x3y2z = 12 . (x . x3) . (y5.y2) . z

= 12x4y7z

b) 12x2y3y3z = 12. x2 . ( y3 . y3) . z

= 12x2y5z

Bài 2. Thu gọn các đa thức sau:

a) 15xy + 3 + 2xy +5;

b) 2,7x2y + 1,3xy2 – 1,7x2y + 4,7xy2 – 15.

Hướng dẫn giải

a) 15xy + 3 + 2xy +5 = (15xy + 2xy) + (3 + 5)

= 17xy + 8.

b) 2,7x2y + 1,3xy2 – 1,7x2y + 4,7xy2 – 15

= (2,7x2y – 1,7x2y) + (1,3xy2 + 4,7xy2) – 15

= x2y + 6xy2 – 15.

Bài 3. Tính giá trị của đa thức sau:

P = x2y – 12x3y + xy – 27 tại x = 1; y = 2.

Hướng dẫn giải

Thay x = 1; y = 2 vào biểu thức P, ta được:

P = 12 . 2 – 12 . 13 . 2 + 1 . 2 – 27

= 2 – 24 + 2 – 27 = – 47.

Vậy với x = 1; y = 2 thì giá trị của biểu thức P = – 47.

Bài 4. Thực hiện phép tính:

a) (x – y)(x2 + 2xy + y2);

b) (x + 2y)(3xy +5y2 + x).

Hướng dẫn giải

a) (x – y)(x2 + 2xy + y2)

= x . x2 + x . 2xy + x . y2 + (–y) . x2 + (–y) . 2xy + (–y) . y2

= x3 + 2x2y + xy2 – x2y – 2xy2 – y3

= x3 + x2y – xy2 – y3

b) (x + 2y)(3xy +5y2 + x)

= x . 3xy + x . 5y2  + x . x + 2y . 3xy + 2y . 5y2  + 2y . x

= 3x2y + 5xy2 + x2 + 6xy2 + 10y3 + 2xy

= 3x2y + 11xy2 + x2 + 10y3 + 2xy

Bài 5. Rút gọn rồi tính giá trị biểu thức:

A = (x + y)(x – y) + (xy4 – x3y2) : (xy2) tại x = 1,2; y = 3

Hướng dẫn giải

A = (x + y)(x – y) + (xy4 – x3y2) : (xy2) + 5xy

= x . x – x . y + y . x  + y . (–y) + (xy4 : xy2) – (x3y2 : xy2) + 5xy

= x2 – xy + xy – y2 + y2 – x2 + 5xy

= 5xy

Thay x = 1,2; y = 3 vào biểu thức A, ta được:

A = 5 . 1,2 . 3 = 18.

Vậy với x = 1,2; y = 3 thì A = 18.

Bài 6. Viết mỗi biểu thức sau về dạng bình phương của một tổng hoặc một hiệu:

a) 4x2 + 4x + 1;

b) y2 – 6y + 9.

Hướng dẫn giải

a) 4x2 + 4x + 1 = (2x)2 + 2. 2x . 1 + 12

= (2x + 1)2

b) y2 – 6y + 9 = y2 – 2 . y . 3 + 32 = (y – 3)2

Bài 7. Viết mỗi biểu thức sau về dạng lập phương của một tổng hoặc một hiệu:

a) b3 + 12b2 + 48b + 64;

b) x3 – 9x2 + 27x – 27.

Hướng dẫn giải

a) b3 + 12b2 + 48b + 64

= b3 + 3 . b2 . 4 + 3 . b . 42 + 43

= (b + 4)3.

b) x3 – 9x2 + 27x – 27

= x3 – 3 . x2 . 3 + 3 . x . 32 – 33

= (x – 3)3.

Bài 8. Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:

A = (3x – 1)2 +  (3x + 1)2 – 2(3x – 1)(3x + 1).

Hướng dẫn giải

A = (3x – 1)2 +  (3x + 1)2 – 2(3x – 1)(3x + 1)

= 9x2 – 6x + 1 + 9x2 + 6x + 1 – 2 . [(3x)2 – 12]

= 18x2 + 2 – 2 . (9x2 – 1)

= 18x2 + 2 – 18x2 – 2 = 0.

Vậy biểu thức A không phụ thuộc vào biến x (đpcm).

Bài 9. Phân tích mỗi đa thức sau thành nhân tử:

a) 8x3 – 64 ;

b) x2 – 25 – 4xy + 4y2.

Hướng dẫn giải

a) 8x3 – 64 = (2x)3 – 43 = (2x – 4)(4x2 + 8x + 16).

b) x2 – 25 – 4xy + 4y2 = (x2 – 4xy + 4y2) – 25

= (x – 2y)2 – 25 = (x – 2y)2 – 52

= (x – 2y – 5)(x – 2y + 5).

Bài 10. Tính giá trị biểu thức sau:

A = x2y2 + 2xyz + z2 biết xy + z = 0.

Hướng dẫn giải

A = x2y2 + 2xyz + z2

= (xy)2 + 2xyz + z2 = (xy + z)2.

Thay xy + z = 0 vào biểu thức A ta được:

A = 02 = 0.

Vậy khi xy + z = 0 giá trị của biểu thức A bằng 0.

Vậy với xy + z = 0 thì A = 0.

Bài 11. Tìm x, biết:

a) x2 – 4x = 0;

b) (x – 3)2 + 3 – x = 0.

Hướng dẫn giải

a) x2 – 4x = 0

x . x – 4 . x = 0

x . (x – 4) = 0

x = 0 hoặc x – 4 = 0

x = 0 hoặc x = 4

Vậy x {0; 4}.

b) (x – 3)2 + 3 – x = 0

(x – 3)(x – 3) + ( –x + 3) = 0

(x – 3)(x – 3) – (x – 3) . 1 = 0

(x – 3)(x – 3 – 1) = 0

(x – 3)(x – 4) = 0

x – 3 = 0 hoặc x – 4 = 0

x = 3 hoặc x = 4

Vậy x {3; 4}.

Xem thêm tóm tắt lý thuyết Toán lớp 8 Chân trời sáng tạo hay khác: