HĐ3 trang 89 Toán 11 Tập 2 - Kết nối tri thức


Nhận biết quy tắc đạo hàm của tổng

Giải Toán 11 Bài 32: Các quy tắc tính đạo hàm - Kết nối tri thức

HĐ3 trang 89 Toán 11 Tập 2: Nhận biết quy tắc đạo hàm của tổng

a) Dùng định nghĩa, tính đạo hàm của hàm số y = x3 + x2 tại điểm x bất kì.

b) So sánh: (x3 + x2)' và (x3)' + (x2)'.

Lời giải:

a)

Đặt f(x) = y = x3 + x2­.

Với x0 bất kì, ta có:

y'=f'(x0)=limxx0f(x)f(x0)xx0=limxx0x3+x2x03x02xx0

=limxx0x3x03+x2x02xx0=limxx0xx0x2+xx0+x02+x+x0xx0

=limxx0x2+xx0+x02+x+x0=3x02+2x0

Vậy đạo hàm của hàm số y = x3 + x2 là hàm số y' = 3x2 + 2x.

b)

Ta có (x3)' = 3x2 ; (x2)' = 2x, do đó (x3)' + (x2)' = 3x2 + 2x.

Từ đó suy ra (x3 + x2)' = (x3)' + (x2)' (cùng bằng 3x2 + 2x).

Lời giải bài tập Toán 11 Bài 32: Các quy tắc tính đạo hàm hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác: