Cho hàm số y = f(x) liên tục trên ℝ và đồ thị có đường tiệm cận ngang như Hình 10


Cho hàm số y = f(x) liên tục trên ℝ và đồ thị có đường tiệm cận ngang như . Hàm số y = f(x) có thể là hàm số nào trong các hàm số sau?

Giải SBT Toán 12 Cánh diều Bài 3: Đường tiệm cận của đồ thị hàm số

Bài 56 trang 25 SBT Toán 12 Tập 1: Cho hàm số y = f(x) liên tục trên ℝ và đồ thị có đường tiệm cận ngang như Hình 10. Hàm số y = f(x) có thể là hàm số nào trong các hàm số sau?

Cho hàm số y = f(x) liên tục trên ℝ và đồ thị có đường tiệm cận ngang như Hình 10

A. f(x)=3x2x2+x+1.

B. f(x)=2x2x2+x+1.

C. f(x)=x2x2+x+1.

D. f(x)=x23x2+x+1.

Lời giải:

Đáp án đúng là: A

Quan sát Hình 10, ta thấy đường thẳng y = 3 là đường tiệm cận ngang của đồ thị hàm số y = f(x).

Nhận thấy: limx3x2x2+x+1 = 3; limx+3x2x2+x+1 = 3.

Do đó, đường thẳng y = 3 là đường tiệm cận ngang của đồ thị hàm số y = 3x2x2+x+1.

Vậy f(x) = 3x2x2+x+1.

Lời giải SBT Toán 12 Bài 3: Đường tiệm cận của đồ thị hàm số hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: