Cho mặt phẳng (P): 2x + 2y + z + 10 = 0 và điểm M(1; 1; 1). Khoảng cách từ M đến (P) bằng
Cho mặt phẳng (P): 2x + 2y + z + 10 = 0 và điểm M(1; 1; 1). Khoảng cách từ M đến (P) bằng.
Giải SBT Toán 12 Chân trời sáng tạo Bài tập cuối chương 5
Bài 1 trang 61 SBT Toán 12 Tập 2: Cho mặt phẳng (P): 2x + 2y + z + 10 = 0 và điểm M(1; 1; 1). Khoảng cách từ M đến (P) bằng.
A. 5
B.
C.
D.
Lời giải:
Đáp án đúng là: A
Ta có: d(M, (P))
Lời giải SBT Toán 12 Bài tập cuối chương 5 hay khác:
Bài 15 trang 64 SBT Toán 12 Tập 2: Cho hai điểm A(2; 1; −2), B(−2; −2; −9) và đường thẳng d: ....
Bài 16 trang 64 SBT Toán 12 Tập 2: Cho hai đường thẳng d: và d': . ....
Bài 17 trang 64 SBT Toán 12 Tập 2: Cho mặt cầu (S): (x – 1)2 + (y – 3)2 + (z + 2)2 = 9. (S) có tâm I(−1; −3; 2). ....
Bài 1 trang 64 SBT Toán 12 Tập 2: Cho hai mặt phẳng (P): x + 2y – z + 3 = 0 và (Q): x – 4y + (m – 1)z + 1= 0 với m là tham số. Tìm giá trị của tham số m để mặt phẳng (P) vuông góc với mặt phẳng (Q). ....
Bài 2 trang 64 SBT Toán 12 Tập 2: Cho hai mặt phẳng (α): x – y + nz – 3 = 0 và (β): 2x + my + 2z + 6 = 0. Với giá trị nào của m, n thì (α) song song với (β)? ....
Bài 3 trang 64 SBT Toán 12 Tập 2: Cho điểm G(1; 2; 3). Viết phương trình mặt phẳng (P) đi qua G và cắt Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm của tam giác ABC. ....
Bài 4 trang 64 SBT Toán 12 Tập 2: Cho hai điểm M(1; −1; 5) và N(0; 0; 1). Viết phương trình mặt phẳng (Q) chứa M, N và song song với trục Oy ....
Bài 5 trang 65 SBT Toán 12 Tập 2: Trong không gian Oxyz (đơn vị trên các trục tọa độ là centimét), đầu in phun của một máy in 3D đang đặt tại điểm M(5; 0; 35). ....
Bài 6 trang 65 SBT Toán 12 Tập 2: Cho hai đường thẳng d1: và đường thẳng d2: . ....
Bài 7 trang 65 SBT Toán 12 Tập 2: Cho đường thẳng d: , điểm M(1; 2; 1) và mặt phẳng (P): 2x + y – 2z – 1 = 0. ....
Bài 8 trang 65 SBT Toán 12 Tập 2: Cho các điểm A(2; 0; 0), B(0; 4; 0), C(0; 0; 4). Viết phương trình mặt cầu ngoại tiếp tứ diện OABC (O là gốc tọa độ) ....
Bài 9 trang 65 SBT Toán 12 Tập 2: Cho mặt cầu (S): (x – 1)2 + (y – 3)2 + (z + 7)2 = 1. Tìm tọa độ các điểm M, N là chân đường vuông góc vẽ từ tâm I của (S) đến các trục tọa độ Oy và Oz ....
Bài 10 trang 65 SBT Toán 12 Tập 2: Cho mặt cầu (S) : (x – 1)2 + y2 + (z + 2)2 = 2. Tính khoảng cách từ tâm I của (S) đến mặt phẳng (Oxy). ....
Bài 11 trang 65 SBT Toán 12 Tập 2: Người ta muốn thiết kế một lều cắm trại có dạng là một phần mặt cầu bằng phần mềm 3D. ....