Các dạng bài tập Tổ hợp chọn lọc, có lời giải - Toán lớp 11


Các dạng bài tập Tổ hợp chọn lọc, có lời giải

Với Các dạng bài tập Tổ hợp chọn lọc, có lời giải Toán lớp 11 tổng hợp các dạng bài tập, 100 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tổ hợp từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

Các dạng bài tập Tổ hợp chọn lọc, có lời giải

Cách giải bài toán đếm số tự nhiên

A. Phương pháp giải & Ví dụ

Dựa vào hai quy tắc cộng, quy tắc nhân và các khái niệm hoán vị, chỉnh hợp, tổ hợp, đếm gián tiếp, đếm phần bù.

Một số dấu hiệu giúp chúng ta nhận biết được hoán vị, chỉnh hợp hay tổ hợp.

1) Hoán vị: Các dấu hiệu đặc trưng để giúp ta nhận dạng một hoán vị của n phần tử là:

        ♦ Tất cả n phần tử đều phải có mặt

        ♦ Mỗi phần tử xuất hiện một lần.

        ♦ Có thứ tự giữa các phần tử.

2) Chỉnh hợp: Ta sẽ sử dụng khái niệm chỉnh hợp khi:

        ♦ Cần chọn k phần tử từ n phần tử, mỗi phần tử xuất hiện một lần

        ♦ k phần tử đã cho được sắp xếp thứ tự.

3) Tổ hợp: Ta sử dụng khái niệm tổ hợp khi:

        ♦ Cần chọn k phần tử từ n phần tử, mỗi phần tử xuất hiện một lần

        ♦ Không quan tâm đến thứ tự k phần tử đã chọn.

Ví dụ minh họa

Bài 1: Từ các số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3?

Đặt y = 23, xét các số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

trong đó a,b,c,d,e đôi một khác nhau và thuộc tập {0,1,y,4,5}.

Số cách chọn một số thỏa mãn điều kiện trên là một hoán vị của 5 phần tử (tính cả trường hợp a = 0). Vậy có P5 số.

Nếu a = 0 thì số số lập được với a,b,c,d,e như trên là P4.

Vậy có (P5 - P4) = 96 số có 5 chữ số thỏa mãn điều kiện trên.

Khi ta hoán vị 2,3 trong y ta được hai số khác nhau

Nên có 96.2 = 192 số thỏa yêu cầu bài toán.

Cách giải phương trình, bất phương trình tổ hợp

A. Phương pháp giải & Ví dụ

Dựa vào công thức tổ hợp, chỉnh hợp hoán vị để chuyển phương trình, bất phương trình, hệ phương trình tổ hợp về phương trình, bất phương trình, hệ phương trình đại số.

Ví dụ minh họa

Bài 1:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án và hướng dẫn giải

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án và hướng dẫn giải

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xác định hệ số, số hạng trong khai triển nhị thức Niu-tơn

Xác định hệ số, số hạng trong khai triển nhị thức Niu-tơn

A. Phương pháp giải & Ví dụ

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Số hạng chứa xm ứng với giá trị k thỏa mãn: np – pk + qk = m.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hệ số của số hạng chứa xm là: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với giá trị k đã tìm được ở trên.

Nếu k không nguyên hoặc k > n thì trong khai triển không chứa xm , hệ số phải tìm bằng 0.

Chú ý: Xác định hệ số của số hạng chứa xm trong khai triển P(x) = (a + bxp + cxq)n

P(x) = (a + bxp + cxq)n được viết dưới dạng a0 + a1x + ...+ a2nx2n

Ta làm như sau:

* Viết P(x) = (a + bxp + cxq)n Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

* Viết số hạng tổng quát khi khai triển các số hạng dạng (bxp+cxq)k thành một đa thức theo luỹ thừa của x.

* Từ số hạng tổng quát của hai khai triển trên ta tính được hệ số của xm.

Chú ý: Để xác định hệ số lớn nhất trong khai triển nhị thức Niutơn

Ta làm như sau:

* Tính hệ số ak theo k và n;

* Giải bất phương trình ak-1 ≤ ak với ẩn số k;

* Hệ số lớn nhất phải tìm ứng với số tự nhiên k lớn nhất thoả mãn bất phương trình trên.

Ví dụ minh họa

Bài 1: Tìm hệ số của x5 trong khai triển đa thức của: x(1-2x)5+x2 (1+3x)10

Đáp án và hướng dẫn giải

Đặt f(x)=x(1-2x)5+x2 (1+3x)10

Ta có :

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hệ số của x5 trong khai triển đa thức của f(x) ứng với k = 4 và i = 3 là:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Đa thức P(x) =(1+3x+2x2)10=a0 + a1 x + ⋯ + a20 x20. Tìm a15

Đáp án và hướng dẫn giải

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

với 0 ≤ i ≤ k ≤ 10. Do đó k + i = 15 với các trường hợp

k=10, i=5 hoặc k=9, i=6 hoặc k=8, i=7

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xem thêm các dạng bài tập Toán lớp 11 chọn lọc, có đáp án hay khác: