X

Lý thuyết Toán 10 Cánh diều

Phương trình đường thẳng (Lý thuyết Toán lớp 10) - Cánh diều


Haylamdo biên soạn và sưu tầm với tóm tắt lý thuyết Toán 10 Bài 3: Phương trình đường thẳng sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.

Phương trình đường thẳng (Lý thuyết Toán lớp 10) - Cánh diều

Lý thuyết Phương trình đường thẳng

I. Phương trình tham số của đường thẳng

1. Vectơ chỉ phương của đường thẳng

Vectơ u được gọi là vectơ chỉ phương của đường thẳng ∆ nếu u0 và giá của u song song hoặc trùng với ∆.

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Nhận xét:

– Nếu u là một vectơ chỉ phương của ∆ thì ku (k ≠ 0) cũng là một vectơ chỉ phương của ∆.

– Một đường thẳng hoàn toàn được xác định khi biết một điểm và một vectơ chỉ phương của đường thẳng đó.

Ví dụ: Đường thẳng ∆ đi qua điểm (2 ; 0) và (0 ; –1) có vectơ chỉ phương u như hình vẽ sau:

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

2. Phương trình tham số của đường thẳng

Hệ Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều (a2 + b2 > 0 và t là tham số) được gọi là phương trình tham số của đường thẳng ∆ đi qua M0(x0 ; y0) và nhận u = (a ; b) làm vectơ chỉ phương.

Nhận xét: Cho đường thẳng ∆ có phương trình tham số là: Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều (a2 + b2 > 0 và t là tham số).

+ Với mỗi giá trị cụ thể của t, ta xác định được một điểm trên đường thẳng ∆. Ngược lại, với mỗi điểm trên đường thẳng ∆, ta xác định được một giá trị cụ thể của t.

+ Vectơ u = (a ; b) là một vectơ chỉ phương của ∆.

Ví dụ:

a) Viết phương trình tham số của đường thẳng ∆ đi qua điểm A(1; 2) và có vectơ chỉ phương u = (–1 ; 3).

b) Cho đường thẳng ∆ có phương trình tham số là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều. Chỉ ra tọa độ một vectơ chỉ phương của ∆ và một điểm thuộc đường thẳng ∆.

Hướng dẫn giải

a) Phương trình đường thẳng ∆ đi qua điểm A(1; 2) và có vectơ chỉ phương u = (–1 ; 3) nên có phương trình tham số là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

Vậy phương trình tham số của đường thẳng ∆ là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

b) Đường thẳng ∆ có phương trình tham số là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

Khi đó ∆ có một vec tơ chỉ phương là (2 ; –1) và điểm (4 ; –3) thuộc ∆.

Vậy ∆ có một vec tơ chỉ phương là (2 ; –1) và điểm (4 ; –3) thuộc ∆.

II. Phương trình tổng quát của đường thẳng

1. Vectơ pháp tuyến của đường thẳng

Vectơ n được gọi là vec tơ pháp tuyến của đường thẳng ∆ nếu n0 và giá của vectơ n vuông góc với ∆.

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Nhận xét:

– Nếu n là một vectơ pháp tuyến của ∆ thì kn (k ≠ 0) cũng là một vectơ pháp tuyến của ∆.

– Một đường thẳng hoàn toàn được xác định khi biết một điểm và một vectơ pháp tuyến của đường thẳng đó.

– Nếu một đường thẳng ∆ có vectơ chỉ phương là u = (a ; b) thì vectơ n = (–b ; a) là một vectơ pháp tuyến của ∆.

2. Phương trình tổng quát của đường thẳng

Phương trình ax + by + c = 0 (a và b không đồng thời bằng 0) được gọi là phương trình tổng quát của đường thẳng.

Nhận xét:

– Đường thẳng ∆ đi qua điểm M (x0 ; y0) và nhận n = (a ; b) làm vectơ pháp tuyến có phương trình là: a(x – x0) + b(y – y0) = 0 ⇔ ax + by + (–ax0 – by0) = 0.

– Mỗi phương trình ax + by + c = 0 (a và b không đồng thời bằng 0) đều xác định một đường thẳng ∆ trong mặt phẳng tọa độ nhận một vec tơ pháp tuyến là n = (a ; b).

Ví dụ: Viết phương trình tổng quát của đường thẳng d đi qua điểm A(1; –2) và có vectơ pháp tuyến n = (–2 ; –3).

Hướng dẫn giải

Theo giả thiết, phương trình của đường thẳng d là : –2(x – 1) + (–3).(y + 2) = 0.

Từ đó, ta nhận được phương trình tổng quát của đường thẳng d là –2x – 3y – 4 = 0.

Vậy phương trình tổng quát của d là –2x – 3y – 4 = 0.

3. Những dạng đặc biệt của phương trình tổng quát

Cho đường thẳng ∆ có phương trình tổng quát ax + by + c = 0 (a hoặc b khác 0).

a) Nếu b = 0 và a ≠ 0 thì phương trình đường thẳng ∆ trở thành ax + c = 0. Khi đó đường thẳng ∆ song song hoặc trùng với trục Oy và cắt trục Ox tại điểm -ca;0.

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

b) Nếu b ≠ 0 và a = 0 thì phương trình đường thẳng ∆ trở thành by + c = 0. Khi đó đường thẳng ∆ song song hoặc trùng với trục Ox và cắt trục Oy tại điểm 0;-cb (Hình 30).

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

c) Nếu b ≠ 0 và a ≠ 0 thì phương trình đường thẳng ∆ có thể viết thành

y = -abx – cb.

Khi đó, đường thẳng ∆ là đồ thị hàm số bậc nhất y = -abx – cb với hệ số góc là k = -ab (Hình 31).

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Nhận xét:

– Đường thẳng ∆ có phương trình tổng quát ax + by + c = 0 (a hoặc b khác 0) là đồ thị của hàm số bậc nhất khi và chỉ khi a ≠ 0 và b ≠ 0.

– Phương trình trục hoành là y = 0, phương trình trục tung là x = 0.

Ví dụ:

a) Cho phương trình đường thẳng ∆ là 2x + 4 = 0. Khi đó đường thẳng ∆ song song với trục Oy và cắt trục Ox tại điểm (–2 ; 0)

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

b) Cho phương trình đường thẳng ∆ là 3x – 9 = 0. Khi đó đường thẳng ∆ song song với trục Ox và cắt trục Oy tại điểm (0 ; 3)

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

c) Cho phương trình đường thẳng ∆ là x + 2y – 2 = 0. Khi đó, đường thẳng ∆ là đồ thị của hàm số bậc nhất y = -12x + 1 với hệ số góc k = -12.

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

III. Lập phương trình đường thẳng

1. Lập phương trình đường thẳng đi qua một điểm và biết vectơ pháp tuyến

Phương trình đường thẳng ∆ đi qua điểm M0(x0 ; y0) và nhận n = (a ; b) (n0) làm vectơ pháp tuyến là a(x – x0) + b(y – y0) = 0.

Ví dụ: Lập phương trình của đường thẳng ∆ đi qua điểm M(2; –2) và có vectơ pháp tuyến n = (2 ; 3).

Hướng dẫn giải

Theo giả thiết, phương trình của đường thẳng ∆ là: 2(x – 2) + 3.(y + 2) = 0.

Từ đó, ta nhận được phương trình của đường thẳng ∆ là 2x + 3y + 2 = 0.

Vậy phương trình của ∆ là 2x + 3y + 2 = 0.

2. Lập phương trình đường thẳng đi qua một điểm và biết vec tơ chỉ phương

Phương trình tham số của đường thẳng ∆ đi qua điểm M0(x0 ; y0) và nhận u = (a ; b) (u0) làm vec tơ chỉ phương là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều (t là tham số).

Nếu a ≠ 0 và b ≠ 0 thì ta còn có thể viết phương trình của đường thẳng ∆ ở dạng: x-x0a=y-y0b.

Ví dụ: Viết phương trình tham số của đường thẳng ∆ đi qua điểm M(–1; 2) và có vectơ chỉ phương u = (1 ; –3).

Hướng dẫn giải

Cách 1: Phương trình tham số của đường thẳng ∆ đi qua điểm M(–1; 2) và có vectơ chỉ phương u = (1 ; –3) là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

Vậy phương trình tham số của đường thẳng ∆ là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

Cách 2: Phương trình đường thẳng ∆ đi qua điểm M(–1; 2) và có vectơ chỉ phương u = (1 ; –3) nên có phương trình là x+11=y-2-3 ⇔ –3x – y – 1= 0.

Vậy phương trình của đường thẳng ∆ là –3x – y – 1= 0.

3. Lập phương trình đi qua hai điểm

Đường thẳng ∆ đi qua hai điểm A(x0 ; y0), B(x1 ; y1) nên nhận vectơ AB = (x1 – x0 ; y1 – y0) làm vectơ chỉ phương. Do đó, phương trình tham số của đường thẳng ∆ là:

Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều (t là tham số).

Nếu x1 – x0 ≠ 0 và y1 – y0 ≠ 0 thì ta còn có thể viết phương trình của đường thẳng ∆ ở dạng: x-x0x1-x0=y-y0y1-y0.

Ví dụ: Lập phương trình ∆ đi qua hai điểm A(2 ; 2) và B(–1 ; 3).

Hướng dẫn giải

Phương trình ∆ đi qua hai điểm A(2 ; 2) và B(–1 ; 3) là

x-2-1-2=y-23-2x-2-3=y-21 ⇔ x + 3y – 8 = 0.

Vậy phương trình đường thẳng ∆ đi qua hai điểm A(2 ; 2) và B(–1 ; 3) là x + 3y – 8 = 0.

Bài tập Phương trình đường thẳng

Bài 1: Viết phương trình đường thẳng d biết:

a) Đường thẳng d đi qua điểm M(4; 3) và có vectơ pháp tuyến là n = (3; –4).

b) Đường thẳng d đi qua điểm M(0 ; –2) và có vectơ chỉ phương là u = (1; 1).

c) Đường thẳng d đi qua hai điểm A(–1 ; 3) và B(2 ; –6).

Hướng dẫn giải

a) Phương trình đường thẳng d đi qua điểm M(4; 3) và có vectơ pháp tuyến là n = (3; –4) là: 3(x – 4) – 4.(y – 3) = 0 ⇔ 3x – 4y = 0.

Vậy phương trình của ∆ là 3x – 4y = 0.

b) Phương trình tham số của đường thẳng d đi qua điểm M(0 ; –2) và có vectơ chỉ phương là u = (1; 1) là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Vậy phương trình tham số của đường thẳng d đi qua điểm M(0 ; –2) và có vectơ chỉ phương là u = (1; 1) là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

c) Phương trình d đi qua hai điểm A(–1 ; 3) và B(2 ; –6) là

x+12+1=y-3-6-3x+13=y-3-9⇔ 3x + y = 0.

Vậy phương trình đường thẳng ∆ đi qua hai điểm A(–1 ; 3) và B(2 ; –6) là 3x + y = 0.

Bài 2: Cho đường thẳng ∆ có phương trình tổng quát là –x + 7y – 5 = 0.

a) Lập phương trình tham số của đường thẳng ∆.

b) Tìm tọa độ giao điểm của đường thẳng ∆ lần lượt với các trục Ox, Oy.

Hướng dẫn giải

a) Đường thẳng ∆ có phương trình tổng quát là –x + 7y – 5 = 0 nên có vectơ pháp tuyến n = (–1 ; 7).

Suy ra đường thẳng ∆ có vectơ chỉ phương là u = (7 ; 1).

Ta thấy điểm A(–5 ; 0) thuộc ∆.

Khi đó, phương trình tham số của đường thẳng ∆ đi qua điểm A(–5 ; 0) có vectơ chỉ phương u = (7 ; 1) là: Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

Vậy phương trình tham số của đường thẳng ∆ là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

b) Tọa độ giao điểm của ∆ với trục Ox là nghiệm của hệ: Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Giải hệ Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều ta được Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Suy ra tọa độ giao điểm của ∆ với trục Ox là (–5 ; 0).

Tọa độ giao điểm của ∆ với trục Oy là nghiệm của hệ: Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Giải hệ Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều ta được Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Suy ra tọa độ giao điểm của ∆ với trục Oy là 0;57

Vậy tọa độ giao điểm của ∆ với trục Ox, Oy lần lượt là (–5 ; 0) và 0;57.

Bài 3: Cho tam giác ABC có A(0; 4), B(–3; 2), C(1; 6).

a) Lập phương trình của đường thẳng BC.

b) Lập phương trình đường trung trực của đoạn thẳng AB.

c) Lập phương trình đường trung tuyến AM của tam giác ABC.

Hướng dẫn giải

a) Phương trình đường thẳng BC đi qua hai điểm B(–3; 2), C(1; 6) là

x+31+3=y-26-2x+34=y-24 ⇔ x – y + 5 = 0.

Vậy phương trình đường thẳng BC là x – y + 5 = 0.

b) Gọi I(xI ; yI) là trung điểm của AB.

Khi đó xI=xA+xB2=0+-32=-32; yI=yA+yB2=4+22=3.

Suy ra I-32;3.

Đường trung trực của AB đi qua điểm I và nhận vec tơ AB = (–3 ; –2) làm vectơ pháp tuyến.

Khi đó đường trung trực của AB có phương trình là:

–3(x – -32) – 2(y – 3) = 0 ⇔ –3x – 2y + 212 = 0.

Vậy phương trình đường trung trực của AB là –3x – 2y + 212 = 0.

c) Gọi M(xM ; yM) là trung điểm của đoạn thẳng BC.

Khi đó xM=xB+xC2=-3+12=-1; yM=yB+yC2=2+62=4.

Suy ra M(–1 ; 4).

Đường trung tuyến AM đi qua hai điểm A và có vectơ chỉ phương AM = (–1 ; 0) có phương trình là: Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều

Vậy đường trung tuyến AM có phương trình là Phương trình đường thẳng (Lý thuyết Toán lớp 10) | Cánh diều.

Học tốt Phương trình đường thẳng

Các bài học để học tốt Phương trình đường thẳng Toán lớp 10 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 10 Cánh diều hay, chi tiết khác: