X

Lý thuyết Toán 10 Cánh diều

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) - Cánh diều


Haylamdo biên soạn và sưu tầm với tóm tắt lý thuyết Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) - Cánh diều

Lý thuyết Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

1. Hàm số bậc hai

Hàm số bậc hai là hàm số được cho bằng biểu thức có dạng y=ax2+bx+c, trong đó a, b, c là những hằng số và a ≠ 0. Tập xác định của hàm số là .

Ví dụ:

- Hàm số y = 2x2+3x-2 là hàm số bậc hai có hệ số của x2 bằng 2, hệ số của x bằng 3 và hệ số tự do bằng -2.

- Hàm số y = 2x - 3 không phải là hàm số bậc số do hệ số của x2ở đây bằng 0.

2. Đồ thị hàm số bậc hai

Đồ thị hàm số bậc hai y=ax2+bx+c (a ≠ 0) là một đường parabol có đỉnh là điểm với toạ độ -b2a;-4a và trục đối xứng là đường thẳng x=-b2a.

Chú ý: Cho hàm số f(x) = ax2+bx+c (a ≠ 0), ta có: -4a = f-b2a

Để vẽ đồ thị hàm số y = ax2+bx+c (a ≠ 0) ta thực hiện các bước:

Bước 1: Xác định toạ độ đỉnh: -b2a;-4a;

Bước 2: Vẽ trục đối xứng x=-b2a;

Bước 3: Xác định một số điểm đặc biệt, chẳng hạn: giao điểm với trục tung (có toạ độ (0; c)) và trục hoành (nếu có), điểm đối xứng với điểm có toạ độ (0; c) qua trục đối xứng x=-b2a

Bước 4: Vẽ đường parabol đi qua các điểm đã xác định ta nhận được đồ thị hàm số.

Ví dụ: Vẽ đồ thị hàm số bậc hai y = x2-2x-3

Hướng dẫn giải

- Tập xác định: D =

- Ta có: a = 1; b = -2; c = -3; =b2-4ac = -22- 4.1.(-3) = 16

- Toạ độ đỉnh I = -b2a;-4a = 22.1;-164.1=1;-4

- Trục đối xứng x=-b2a = 1

- Giao điểm của parabol với trục Oy là A(0; -3)

- Giao điểm của parabol với trục Ox là B (-1; 0); (3; 0)

- Điểm đối xứng với điểm A qua trục đối xứng x = 1 là D (2; -3)

Vẽ parabol qua các điểm trên:

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) | Cánh diều

Chú ý:

Cho hàm số f(x) = ax2+bx+c (a ≠ 0)

- Nếu a > 0 thì hàm số nghịch biến trên khoảng -;-b2a; đồng biến trên khoảng -b2a;+

- Nếu a < 0 thì hàm số đồng biến trên khoảng -;-b2a; nghịch biến trên khoảng -b2a;+

Bảng biến thiên:

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) | Cánh diều

Bài tập Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Bài 1. Trong các hàm số sau, hàm số nào là hàm số bậc hai? Với những hàm số bậc hai đó, xác định a, b, c lần lượt là hệ số của x2, hệ số của x và hệ số tự do.

a) y = -3x2

b) y = 2xx2-6x+1

c) y = 4x(2x - 5)

Hướng dẫn giải

a) y = -3x2 là hàm số bậc với hệ số của x2 bằng -3, hệ số của x bằng 0, hệ số tự do bằng 0

b) y = 2xx2-6x+1 = 2x3- 12x2+ 2x không phải là hàm số bậc 2.

c) y = 4x(2x - 5) = 8x2 - 20x là hàm số bậc 2 với hệ số x2 bằng 8, hệ số của x bằng -20, hệ số tự do bằng 0.

Bài 2. Xác định parabol y = ax2+bx+4 trong mỗi trường hợp sau:

a) Đi qua điểm M(1; 12) và N(-3; 4);

b) Có đỉnh là I(-3; -5).

Hướng dẫn giải

a) Thay x = 1; y = 12 vào phương trình y = ax2+bx+4 ta được:

12 = a.12+ b.1 +4 = a + b = 8 (1)

Thay x = -3; y = 4 vào phương trình y = ax2+bx+4 ta được:

4 = a.-32+ (-3).b + 4 = 9a - 3b = 0 (2)

Từ (1) và (2) ta có: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) | Cánh diều

Như vậy y = 2x2+6x+4

b) Ta có: Toạ độ đỉnh I -b2a;-4a= (-3; -5)

= b2-4ac=b2 - 4.a.4 = b2 - 16a

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) | Cánh diều

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) | Cánh diều.Như vậy trường a = 0; b = 0 không thoả mãn, ta chọn được:

a = 1; b = 6 phương trình y = x2 + 6x + 4

Bài 3. Vẽ đồ thị của mỗi hàm số sau:

a) y = 2x2 - 6x + 4

b) y = -3x2 - 6x - 3

Hướng dẫn giải

a)

- Tập xác định: D =

- Ta có: a = 2; b = -6; c = 4; =b2-4ac = -62- 4.2.4 = 4

- Toạ độ đỉnh I = -b2a;-4a = 62.2;-44.2=32;-12

- Trục đối xứng x=-b2a=32

- Giao điểm của parabol với trục Oy là A(0; 4)

- Giao điểm của parabol với trục Ox là B (1; 0); (2; 0)

- Chọn một điểm thuộc đồ thị cho x = -1 thay vào y = 2x2 - 6x + 4 ta được điểm D(-1; 12)

Vẽ parabol qua các điểm trên:

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) | Cánh diều

b)

- Tập xác định: D =

- Ta có: a = -3; b = -6; c = -3; =b2-4ac = -62- 4.(-3).(-3) = 0

- Toạ độ đỉnh I = -b2a;-4a = 62.(-3);04.(-3)=-1;0

- Trục đối xứng x=-b2a= -1

- Giao điểm của parabol với trục Oy là A(0; -3)

- Giao điểm của parabol với trục Ox là B (-1; 0)

- Chọn một điểm thuộc đồ thị cho x = 1 thay vào y = -3x2 - 6x - 3 ta được điểm D(1; -12)

- Chọn một điểm thuộc đồ thị cho x = -2 thay vào y = -3x2 - 6x - 3 ta được điểm D(-2; -3)

Vẽ parabol qua các điểm trên:

Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng (Lý thuyết Toán lớp 10) | Cánh diều

Học tốt Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng

Các bài học để học tốt Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng Toán lớp 10 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 10 Cánh diều hay, chi tiết khác: