Với 23 bài tập trắc nghiệm Toán lớp 6 Bài 12: Bội chung. Bội chung nhỏ nhất có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức với cuộc sống sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 6.
Với 23 bài tập trắc nghiệm Toán lớp 6 Bài 12: Bội chung. Bội chung nhỏ nhất có đáp án và lời giải chi tiết đầy đủ các mức độ
sách Kết nối tri thức với cuộc sống sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 6.
I. Nhận biết
Câu 1. Một số tự nhiên a khác 0 nhỏ nhất thỏa mãn và . Khi đó a là:
A. ƯC(12, 36).
B. BC(12, 36).
C. ƯCLN(12, 36).
D. BCNN(12, 36).
Lời giải
Vì và nên a là bội chung của 12 và 36.
Mà a là số tự nhiên khác 0 nhỏ nhất nên a chính là BCNN(12, 36).
Đáp án: D
Câu 2. Sắp xếp các bước tìm BCNN của hai hay nhiều số lớn hơn 1:
1 – Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lấy với số mũ lớn nhất. Tích đó là BCNN cần tìm.
2 – Chọn ra các thừa số nguyên tố chung và riêng.
3 – Phân tích mỗi số ra thừa số nguyên tố.
A. 1 – 2 – 3.
B. 2 – 3 – 1.
C. 3 – 1 – 2.
D. 3 – 2 – 1.
Lời giải
Các bước tìm BCNN của hai hay nhiều số lớn hơn 1:
3 – Phân tích mỗi số ra thừa số nguyên tố.
2 – Chọn ra các thừa số nguyên tố chung và riêng.
1 – Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lấy với số mũ lớn nhất. Tích đó là BCNN cần tìm.
Đáp án: D
Câu 3. Bội chung của hai hay nhiều số là gì:
A. là một tập hợp.
B. là ước của tất cả các số đó.
C. là bội của tất cả các số đó.
D. A, B và C đều đúng.
Lời giải Bội chung của hai hay nhiều số là bội của tất cả các số đó.
Đáp án: C
Câu 4. Nếu x a, x b thì:
A. x ∈ BC(a, b).
B. x là BCNN(a, b).
C. x ∈ ƯC(a,b).
D. x là ƯCLN(a, b).
Lời giải
Nếu thì x BC(a, b).
Đáp án: B
Câu 5. Mọi số tự nhiên a và b khác 0 ta có:
A. BCNN(a, b, 1) = a.
B. BCNN(a, b, 1) = b.
C. BCNN(a, b, 1) = 1.
D. BCNN(a, b, 1) = BCNN(a, b).
Lời giải
Mọi số tự nhiên đều là bội của 1. Do đó với mọi số tự nhiên a và b (khác 0), ta có:
BCNN(a, b, 1) = BCNN(a, b).
Đáp án: D
Câu 6. Cho biết BC(4, 6) = {0; 12; 24; 36; 48; …}. Hãy cho biết BCNN(4, 6).
A. BCNN(4,6) = 0.
B. BCNN(4, 6) = 12.
C. BCNN(4, 6) = 24.
D. BCNN(4, 6) = 36.
Lời giải
Trong tập hợp BC(4, 6) ta thấy bội chung nhỏ nhất khác 0 là 12.
Nên BCNN(4, 6) = 12.
Đáp án: B
Câu 7. Nếu và thì 20 là ………………….. của a và b.
A. ước chung.
B. bội chung.
C. ước chung lớn nhất.
D. bội chung nhỏ nhất.
Lời giải
Nếu và thì 20 là bội chung của a và b.
Đáp án: B
Câu 8. Nếu 30 là số tự nhiên nhỏ nhất mà 30 a và 30 b thì 30 là …………….. của a và b.
A. ước chung.
B. bội chung.
C. ước chung lớn nhất.
D. bội chung nhỏ nhất.
Lời giải Nếu 30 là số tự nhiên nhỏ nhất mà 30 a và 30 b thì 30 là bội chung nhỏ nhất của a và b.
Đáp án: D
Câu 9. Cho m = 3.52 và n = 52.7. Tìm ƯCLN(m, n):
A. 5;
B. 25;
C. 75;
D. 105.
Lời giải
Ta có: m = 3.52 và n = 52.7.
Tích các thừa số chung với số mũ nhỏ nhất là: 52.
ƯCLN(m, n) = 52 = 25.
Đáp án: B
Câu 10. Cho m = 22.3.5 và n = 2.32.5. Tìm BCNN(m, n):
A. 30;
B. 60;
C. 90;
D. 180.
Lời giải
Ta có m = 22.3.5 và n = 2.32.5
Tích các thừa số chung và riêng với số mũ lớn nhất là: 22.32.5 = 180.
BCNN(m, n) = 180.
Đáp án: D
II. Thông hiểu
Câu 1. Cho hai số tự nhiên 15 và 25. Tập hợp BC(15, 25) là:
A. BC(15, 25) = 75.
B. BC(15, 25) = 0; 75; 150; 225; …
C. BC(15, 25) = {0; 75; 150; 225; …}.
D. BC(15, 25) = {75}.
Lời giải
Ta có: 15 = 3.5; 25 = 52.
Tích các thừa số chung và riêng với số mũ lớn nhất là: 3.52.
Câu 1. Tìm các số tự nhiên a và b (a < b), biết ƯCLN(a, b) = 15 và BCNN(a, b) = 180. Hỏi có bao nhiêu cặp số a và b như thế?
A. 0;
B. 1;
C. 2;
D. 3
Lời giải
Đặt a = 15m, b = 15 n với , m < n và ƯCLN(m, n) = 1.
Ta có: ab = ƯCLN(a, b).BCNN(a, b) = 15.180 = 2 700.
Do đó (15m).(15n) = 2700
Hay 15.15.m.n = 2 700
225.m.n = 2 700
m.n = 12 = 1.12 = 3.4 = 2.6.
Vì m, n là các số tự nhiên khác 0 thỏa mãn m < n và nguyên tố cùng nhau nên:
+) m = 1, n = 12 suy ra a = 15, b = 180.
+) m = 3, n = 4 suy ra a = 45; n = 60.
Vậy có 2 cặp (a, b).
Đáp án: C
Câu 2. Trong một buổi tập đồng diễn thể dục có khoảng 400 đến 500 người tham gia. Thầy tổng phụ trách cho xếp thành hàng 5, hàng 6 và hàng 8 thì đều thừa một người. Hỏi có chính xác bao nhiêu người dự buổi tập đồng diễn thể dục.
A. 480;
B. 481;
C. 360;
D. 361.
Lời giải
Gọi số người tham gia buổi tập đồng diễn thể dục là x (, 400 < x < 500).
Do số người tham gia xếp thàng hàng 5, hàng 6 và hàng 8 đều thừa một người nên ta có:
nên x – 1 BC(5, 6, 8).
Ta có 5 = 5, 6 = 2.3, 8 = 23.
Khi đó: BCNN(5, 6, 8) = 23.3.5 = 8.3.5 = 120.
Suy ra BC(5, 6, 8) = B(120) = .
Do đó x – 1 .
Hay x .
Mà 400 < x < 500 nên x = 481.
Đáp án: B
Câu 3. Học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ hàng. Hỏi số học sinh lớp 6A là bao nhiêu, biết rằng số học sinh nhỏ hơn 45?
A. 42;
B. 45;
C.21;
D. 35.
Lời giải
Số học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ nên số học sinh là bội chung của 2, 3 và 7.
Ta có: 2 = 2, 3 = 3, 7 = 7.
BCNN(2, 3, 7) = 2.3.7 = 42.
BC(2, 3, 7) = B(42) = {0; 42; 84; 126; …}.
Mà số học sinh nhỏ hơn 45 nên số học sinh của 6A là 42 học sinh.
Đáp án: A
Xem thêm bài tập trắc nghiệm Toán lớp 6 có đáp án sách Kết nối tri thức với cuộc sống hay khác: