Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1


Cho hàm số y = .

Giải SBT Toán 12 Cánh diều Bài tập cuối chương 1

Bài 101 trang 42 SBT Toán 12 Tập 1: Cho hàm số y = 3x21x .

a) Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1.

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

b) Đồ thị hàm số có tiệm cận ngang là đường thẳng y = 3.

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

c) Điểm M nằm trên đồ thị hàm số có hoành độ x0 ≠ 1 thì tung độ y0 = −3 − 1x01 .

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

d) Tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Cho hàm số y = (3x-2)/(1-x). Đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1

Lời giải:

a) Đ

b) S

c) Đ

d) Đ

Ta có: y = 3x21x .

Tập xác định: D = ℝ\{1}.

limx1 y = limx13x21x = +∞, limx1+ y = limx1+3x21x = −∞.

Do đó, đồ thị hàm số có tiệm cận đứng là đường thẳng x = 1.

limxy = limx3x21x = −3, limx+ y = limx+3x21x = −3.

Do đó, đồ thị hàm số có tiệm cận ngang là đường thẳng y = −3.

Có x = x0 thay vào hàm y ta được:

y = 3x021x0 = 3(x0+1)+1x0+1 = 3+1x0+1 = −3 − 1x01 .

Lấy M(x0; −3 − 1x01 ) thuộc đồ thị hàm số, ta có:

Khoảng cách từ M đến đường tiệm cận đứng x = 1 là: x012 .

Khoảng cách từ M đến đường tiệm cận ngang y = −3 là: 1x012 .

Ta có x0121x012=x0121x012=1 .

Vậy tích khoảng cách từ điểm M bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.

Lời giải SBT Toán 12 Bài tập cuối chương 1 hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Cánh diều hay, chi tiết khác: