Các dạng bài tập Hàm số bậc nhất và bậc hai chọn lọc có lời giải - Toán lớp 10
Các dạng bài tập Hàm số bậc nhất và bậc hai chọn lọc có lời giải
Với Các dạng bài tập Hàm số bậc nhất và bậc hai chọn lọc có lời giải Toán lớp 10 tổng hợp các dạng bài tập, bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Hàm số bậc nhất và bậc hai từ đó đạt điểm cao trong bài thi môn Toán lớp 10.
Tổng hợp lý thuyết chương Hàm số bậc nhất và bậc hai
Chủ đề: Đại cương về hàm số
- Dạng 1: Tìm tập xác định của hàm số Xem chi tiết
- Dạng 2: Xét tính chẵn lẻ của hàm số Xem chi tiết
- Dạng 3: Xét tính đơn điệu (đồng biến, nghịch biến) của hàm số Xem chi tiết
- Dạng 4: Bài tập về đồ thị hàm số Xem chi tiết
- Bài tập tổng hợp: Bài tập về hàm số Xem chi tiết
Chủ đề: Hàm số bậc nhất
- Dạng 1: Xác định hàm số y = ax + b và sự tương giao của đồ thị hàm số Xem chi tiết
- Dạng 2: Xét sự biến thiên và vẽ đồ thị hàm số bậc nhất Xem chi tiết
- Dạng 3: Đồ thị hàm số chứa dấu giá trị tuyệt đối Xem chi tiết
- Dạng 4: Ứng dụng của hàm số bậc nhất trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất Xem chi tiết
- Bài tập tổng hợp: Bài tập về hàm số bậc nhất Xem chi tiết
Chủ đề: Hàm số bậc hai
- Dạng 1: Xác định Hàm số bậc hai Xem chi tiết
- Dạng 2: Xét sự biến thiên và vẽ đồ thị hàm số bậc hai Xem chi tiết
- Dạng 3: Đồ thị hàm số chứa dấu giá trị tuyệt đối và cho bởi nhiều công thức Xem chi tiết
- Dạng 4: Ứng dụng của hàm số bậc hai trong chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất Xem chi tiết
- Bài tập tổng hợp: Bài tập về hàm số bậc hai Xem chi tiết
Bài tập tổng hợp chương
- Bài tập chương: Hàm số bậc nhất và bậc hai (Bài tập tự luận) Xem chi tiết
- Bài tập chương: Hàm số bậc nhất và bậc hai (Bài tập trắc nghiệm) Xem chi tiết
Cách tìm tập xác định của hàm số
1. Phương pháp giải.
Tập xác định của hàm số y = f(x) là tập các giá trị của x sao cho biểu thức f(x) có nghĩa
Chú ý: Nếu P(x) là một đa thức thì:
2. Các ví dụ:
Ví dụ 1: Tìm tập xác định của các hàm số sau
Hướng dẫn:
a) ĐKXĐ: x2 + 3x - 4 ≠ 0
Suy ra tập xác định của hàm số là D = R\{1; -4}.
b) ĐKXĐ:
c) ĐKXĐ: x3 + x2 - 5x - 2 = 0
Suy ra tập xác định của hàm số là
d) ĐKXĐ: (x2 - 1)2 - 2x2 ≠ 0 ⇔ (x2 - √2.x - 1)(x2 + √2.x - 1) ≠ 0
Suy ra tập xác định của hàm số là:
Ví dụ 2: Tìm tập xác định của các hàm số sau:
Hướng dẫn:
a) ĐKXĐ:
Suy ra tập xác định của hàm số là D = (1/2; +∞)\{3}.
b) ĐKXĐ:
Suy ra tập xác định của hàm số là D = [-2; +∞)\{0;2}.
c) ĐKXĐ:
Suy ra tập xác định của hàm số là D = [-5/3; 5/3]\{-1}
d) ĐKXĐ: x2 - 16 > 0 ⇔ |x| > 4
Suy ra tập xác định của hàm số là D = (-∞; -4) ∪ (4; +∞).
Ví dụ 3: Cho hàm số: với m là tham số
a) Tìm tập xác định của hàm số theo tham số m.
b) Tìm m để hàm số xác định trên (0; 1)
Hướng dẫn:
a) ĐKXĐ:
Suy ra tập xác định của hàm số là D = [m-2; +∞)\{m-1}.
b) Hàm số xác định trên (0; 1) ⇔ (0;1) ⊂ [m - 2; m - 1) ∪ (m - 1; +∞)
Vậy m ∈ (-∞; 1] ∪ {2} là giá trị cần tìm.
Ví dụ 4: Cho hàm số với m là tham số.
a) Tìm tập xác định của hàm số khi m = 1.
b) Tìm m để hàm số có tập xác định là [0; +∞)
Hướng dẫn:
ĐKXĐ:
a) Khi m = 1 ta có ĐKXĐ:
Suy ra tập xác định của hàm số là D = [(-1)/2; +∞)\{0}.
b) Với 1 - m ≥ (3m - 4)/2 ⇔ m ≤ 6/5, khi đó tập xác định của hàm số là
D = [(3m - 4)/2; +∞)\{1 - m}
Do đó m ≤ 6/5 không thỏa mãn yêu cầu bài toán.
Với m > 6/5 khi đó tập xác định của hàm số là D = [(3m - 4)/2; +∞).
Do đó để hàm số có tập xác định là [0; +∞) thì (3m - 4)/2 = 0 ⇔ m = 4/3 (thỏa mãn)
Vậy m = 4/3 là giá trị cần tìm.
Cách xác định hàm số y = ax + b và sự tương giao của đồ thị hàm số
1. Phương pháp giải.
+ Để xác định hàm số bậc nhất ta là như sau:
Gọi hàm số cần tìm là y = ax + b (a ≠ 0). Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b từ đó suy ra hàm số cần tìm.
+ Cho hai đường thẳng d1: y = a1x + b1 và d2: y = a2x + b2. Khi đó:
a) d1 và d2 trùng nhau
b) d1 và d2 song song nhau
c) d1 và d2 cắt nhau ⇔ a1 ≠ a2. Và tọa độ giao điểm là nghiệm của hệ phương trình:
d) d1 và d2 vuông góc nhau ⇔ a1.a2 = -1
2. Các ví dụ minh họa.
Ví dụ 1. Cho hàm số bậc nhất có đồ thị là đường thẳng d. Tìm hàm số đó biết:
a) d đi qua A(1; 3), B(2; -1).
b) d đi qua C(3; -2) và song song với Δ: 3x - 2y + 1 = 0.
c) d đi qua M (1; 2) và cắt hai tia Ox, Oy tại P, Q sao cho SΔOPQ nhỏ nhất.
d) d đi qua N (2; -1) và d ⊥d' với d': y = 4x + 3.
Hướng dẫn:
Gọi hàm số cần tìm là y = ax + b (a ≠ 0).
a) Vì A ∈ d; B ∈ d nên ta có hệ phương trình:
Vậy hàm số cần tìm là y = -4x + 7.
b) Ta có Δ:y = 3x/2 + 1/2. Vì d // Δ nên
Mặt khác C ∈ d ⇒ -2 = 3a + b (2)
Từ (1) và (2) suy ra
Vậy hàm số cần tìm là y = 3x/2 - 13/2.
c) Đường thẳng d cắt tia Ox tại P((-b)/a; 0) và cắt tia Oy tại Q(0; b) với b > 0; a < 0.
(Do cắt tia Ox, Oy nên hoành độ và tung độ giao điểm đều dương).
Ta có M ∈ d ⇒ 2 = a + b ⇒ b = 2 - a, thay vào (3) ta được:
Áp dụng bất đẳng thức Cô- si ta có:
⇒ SOPQ ≥ 2 + 2 = 4
Đẳng thức xảy ra khi và chỉ khi:
Vậy hàm số cần tìm là y = -2x + 4.
d) Đường thẳng d đi qua N(2; -1) nên -1 = 2a + b
Và d ⊥ d' ⇒ 4.a = -1 ⇒ a = (-1)/4
⇒ b = -1 - 2a = (-1)/2
Vậy hàm số cần tìm là y = (-1)x/4 - 1/2.
Ví dụ 2: Cho hai đường thẳng d: y = x + 2m; d': y = 3x + 2 (m là tham số)
a) Chứng minh rằng hai đường thẳng d, d’ cắt nhau và tìm tọa độ giao điểm của chúng
b) Tìm m để ba đường thẳng d, d’ và d’’: y = -mx + 2 phân biệt đồng quy.
Hướng dẫn:
a) Ta có ad = 1 ≠ ad' = 3 suy ra hai đường thẳng d, d’ cắt nhau.
Tọa độ giao điểm của hai đường thẳng d, d’ là nghiệm của hệ phương trình
suy ra d,d’ cắt nhau tại M(m - 1; 3m - 1)
b) Vì ba đường thẳng d, d’, d’’ đồng quy nên M ∈ d" ta có:
3m - 1 = -m(m - 1) + 2 ⇔ m2 + 2m - 3 = 0
Với m = 1 ta có ba đường thẳng là d: y = x + 2, d': y = 3x + 2; d'': y = -x + 2 phân biệt đồng quy tại M(0; 2).
Với m = -3 ta có d' ≡ d'' suy ra m = -3 không thỏa mãn
Vậy m = 1 là giá trị cần tìm.
Ví dụ 3: Cho đường thẳng d: y = (m - 1)x + m và d': y = (m2 - 1)x + 6
a) Tìm m để hai đường thẳng d, d’ song song với nhau
b) Tìm m để đường thẳng d cắt trục tung tại A, d’ cắt trục hoành tại B sao cho tam giác OAB cân tại O.
Hướng dẫn:
a) Với m = 1 ta có d: y = 1, d': y = 6 do đó hai đường thẳng này song song với nhau
Với m = -1 ta có d: y = -2x - 1, d': y = 6 suy ra hai đường thẳng này cắt nhau tại M((-7)/2; 6).
Với m ≠ ±1 khi đó hai đường thẳng trên là đồ thị của hàm số bậc nhất nên song song với nhau khi và chỉ khi
Đối chiếu với điều kiện m ≠ ±1 suy ra m = 0.
Vậy m = 0 và m = 1 là giá trị cần tìm.
b) Ta có tọa độ điểm A là nghiệm của hệ
Tọa độ điểm B là nghiệm của hệ
Rõ ràng m = ±1 hệ phương trình (*) vô nghiệm
Với m ≠ ±1 ta có (*)
Do đó tam giác OAB cân tại O ⇔ OA=OB
Vậy m = ±2 là giá trị cần tìm.
Cách xác định Hàm số bậc hai
1. Phương pháp giải.
Để xác định hàm số bậc hai ta là như sau
Gọi hàm số cần tìm là y = ax2 + bx + c, a ≠ 0. Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b, c từ đó suy ra hàm số cần tìm.
2. Các ví dụ minh họa.
Ví dụ 1. Xác định parabol (P) : y = ax2 + bx + c, a ≠ 0, biết:
a) (P) đi qua A (2; 3) và có đỉnh I (1; 2)
b) c = 2 và (P) đi qua B (3; -4) và có trục đối xứng là x = (-3)/2.
c) Hàm số y = ax2 + bx + c có giá trị nhỏ nhất bằng 3/4 khi x = 1/2 và nhận giá trị bằng 1 khi x = 1.
d) (P) đi qua M (4; 3) cắt Ox tại N (3; 0) và P sao cho ΔINP có diện tích bằng 1 biết hoành độ điểm P nhỏ hơn 3. (I là đỉnh của (P)).
Hướng dẫn:
a) Vì A ∈ (P) nên 3 = 4a + 2b + c
Mặt khác (P) có đỉnh I(1;2) nên:
(-b)/(2a) = 1 ⇔ 2a + b = 0
Lại có I ∈ (P) suy ra a + b + c = 2
Ta có hệ phương trình:
Vậy (P) cần tìm là y = x2 - 2x + 3.
b) Ta có c = 2 và (P) đi qua B(3; -4) nên -4 = 9a + 3b + 2 ⇔ 3a + b = -2
(P) có trục đối xứng là x = (-3)/2 nên (-b)/(2a) = -3/2 ⇔ b = 3a
Ta có hệ phương trình:
Vậy (P) cần tìm là y = (-1)x2/3 - x + 2.
c) Hàm số y = ax2 + bx + c có giá trị nhỏ nhất bằng 3/4 khi x = 1/2 nên ta có:
Hàm số y = ax2 + bx + c nhận giá trị bằng 1 khi x = 1 nên a + b + c = 1 (2)
Từ (1) và (2) ta có hệ phương trình:
Vậy (P) cần tìm là y = x2 - x + 1.
d) Vì (P) đi qua M (4; 3) nên 3 = 16a + 4b + c (1)
Mặt khác (P) cắt Ox tại N (3; 0) suy ra 0 = 9a + 3b + c (2)
Từ (1) và (2) ta có: 7a + b = 3 ⇒ b = 3 - 7a
(P) cắt Ox tại P nên P (t; 0) (t < 3) ⇒ NP = 3 - t
Theo định lý Viét ta có
Ta có:
Thay (*) vào (**) ta được:
(3 - t)3 = 8(4-t)/3 ⇔ 3t3 - 27t2 + 73t - 49 = 0 ⇔ t = 1
Suy ra a = 1; b = - 4; c = 3.
Vậy (P) cần tìm là y = x2 - 4x + 3.