Các dạng bài tập Hàm số bậc nhất và bậc hai chọn lọc có lời giải - Toán lớp 10


Các dạng bài tập Hàm số bậc nhất và bậc hai chọn lọc có lời giải

Với Các dạng bài tập Hàm số bậc nhất và bậc hai chọn lọc có lời giải Toán lớp 10 tổng hợp các dạng bài tập, bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Hàm số bậc nhất và bậc hai từ đó đạt điểm cao trong bài thi môn Toán lớp 10.

Các dạng bài tập Hàm số bậc nhất và bậc hai chọn lọc có lời giải

Tổng hợp lý thuyết chương Hàm số bậc nhất và bậc hai

Chủ đề: Đại cương về hàm số

Chủ đề: Hàm số bậc nhất

Chủ đề: Hàm số bậc hai

Bài tập tổng hợp chương

Cách tìm tập xác định của hàm số

1. Phương pháp giải.

Tập xác định của hàm số y = f(x) là tập các giá trị của x sao cho biểu thức f(x) có nghĩa

Chú ý: Nếu P(x) là một đa thức thì:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

2. Các ví dụ:

Ví dụ 1: Tìm tập xác định của các hàm số sau

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

a) ĐKXĐ: x2 + 3x - 4 ≠ 0

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là D = R\{1; -4}.

b) ĐKXĐ:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

c) ĐKXĐ: x3 + x2 - 5x - 2 = 0

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

d) ĐKXĐ: (x2 - 1)2 - 2x2 ≠ 0 ⇔ (x2 - √2.x - 1)(x2 + √2.x - 1) ≠ 0

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ví dụ 2: Tìm tập xác định của các hàm số sau:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hướng dẫn:

a) ĐKXĐ: Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là D = (1/2; +∞)\{3}.

b) ĐKXĐ: Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là D = [-2; +∞)\{0;2}.

c) ĐKXĐ:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là D = [-5/3; 5/3]\{-1}

d) ĐKXĐ: x2 - 16 > 0 ⇔ |x| > 4

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là D = (-∞; -4) ∪ (4; +∞).

Ví dụ 3: Cho hàm số: Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án với m là tham số

a) Tìm tập xác định của hàm số theo tham số m.

b) Tìm m để hàm số xác định trên (0; 1)

Hướng dẫn:

a) ĐKXĐ:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là D = [m-2; +∞)\{m-1}.

b) Hàm số xác định trên (0; 1) ⇔ (0;1) ⊂ [m - 2; m - 1) ∪ (m - 1; +∞)

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy m ∈ (-∞; 1] ∪ {2} là giá trị cần tìm.

Ví dụ 4: Cho hàm số Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án với m là tham số.

a) Tìm tập xác định của hàm số khi m = 1.

b) Tìm m để hàm số có tập xác định là [0; +∞)

Hướng dẫn:

ĐKXĐ: Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

a) Khi m = 1 ta có ĐKXĐ: Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Suy ra tập xác định của hàm số là D = [(-1)/2; +∞)\{0}.

b) Với 1 - m ≥ (3m - 4)/2 ⇔ m ≤ 6/5, khi đó tập xác định của hàm số là

D = [(3m - 4)/2; +∞)\{1 - m}

Do đó m ≤ 6/5 không thỏa mãn yêu cầu bài toán.

Với m > 6/5 khi đó tập xác định của hàm số là D = [(3m - 4)/2; +∞).

Do đó để hàm số có tập xác định là [0; +∞) thì (3m - 4)/2 = 0 ⇔ m = 4/3 (thỏa mãn)

Vậy m = 4/3 là giá trị cần tìm.

Cách xác định hàm số y = ax + b và sự tương giao của đồ thị hàm số

1. Phương pháp giải.

+ Để xác định hàm số bậc nhất ta là như sau:

Gọi hàm số cần tìm là y = ax + b (a ≠ 0). Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b từ đó suy ra hàm số cần tìm.

+ Cho hai đường thẳng d1: y = a1x + b1 và d2: y = a2x + b2. Khi đó:

a) d1 và d2 trùng nhauToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

b) d1 và d2 song song nhauToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

c) d1 và d2 cắt nhau ⇔ a1 ≠ a2. Và tọa độ giao điểm là nghiệm của hệ phương trình:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

d) d1 và d2 vuông góc nhau ⇔ a1.a2 = -1

2. Các ví dụ minh họa.

Ví dụ 1. Cho hàm số bậc nhất có đồ thị là đường thẳng d. Tìm hàm số đó biết:

a) d đi qua A(1; 3), B(2; -1).

b) d đi qua C(3; -2) và song song với Δ: 3x - 2y + 1 = 0.

c) d đi qua M (1; 2) và cắt hai tia Ox, Oy tại P, Q sao cho SΔOPQ nhỏ nhất.

d) d đi qua N (2; -1) và d ⊥d' với d': y = 4x + 3.

Hướng dẫn:

Gọi hàm số cần tìm là y = ax + b (a ≠ 0).

a) Vì A ∈ d; B ∈ d nên ta có hệ phương trình:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy hàm số cần tìm là y = -4x + 7.

b) Ta có Δ:y = 3x/2 + 1/2. Vì d // Δ nênToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Mặt khác C ∈ d ⇒ -2 = 3a + b (2)

Từ (1) và (2) suy raToán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy hàm số cần tìm là y = 3x/2 - 13/2.

c) Đường thẳng d cắt tia Ox tại P((-b)/a; 0) và cắt tia Oy tại Q(0; b) với b > 0; a < 0.

(Do cắt tia Ox, Oy nên hoành độ và tung độ giao điểm đều dương).

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ta có M ∈ d ⇒ 2 = a + b ⇒ b = 2 - a, thay vào (3) ta được:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Áp dụng bất đẳng thức Cô- si ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

⇒ SOPQ ≥ 2 + 2 = 4

Đẳng thức xảy ra khi và chỉ khi:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy hàm số cần tìm là y = -2x + 4.

d) Đường thẳng d đi qua N(2; -1) nên -1 = 2a + b

Và d ⊥ d' ⇒ 4.a = -1 ⇒ a = (-1)/4

⇒ b = -1 - 2a = (-1)/2

Vậy hàm số cần tìm là y = (-1)x/4 - 1/2.

Ví dụ 2: Cho hai đường thẳng d: y = x + 2m; d': y = 3x + 2 (m là tham số)

a) Chứng minh rằng hai đường thẳng d, d’ cắt nhau và tìm tọa độ giao điểm của chúng

b) Tìm m để ba đường thẳng d, d’ và d’’: y = -mx + 2 phân biệt đồng quy.

Hướng dẫn:

a) Ta có ad = 1 ≠ ad' = 3 suy ra hai đường thẳng d, d’ cắt nhau.

Tọa độ giao điểm của hai đường thẳng d, d’ là nghiệm của hệ phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

suy ra d,d’ cắt nhau tại M(m - 1; 3m - 1)

b) Vì ba đường thẳng d, d’, d’’ đồng quy nên M ∈ d" ta có:

3m - 1 = -m(m - 1) + 2 ⇔ m2 + 2m - 3 = 0Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Với m = 1 ta có ba đường thẳng là d: y = x + 2, d': y = 3x + 2; d'': y = -x + 2 phân biệt đồng quy tại M(0; 2).

Với m = -3 ta có d' ≡ d'' suy ra m = -3 không thỏa mãn

Vậy m = 1 là giá trị cần tìm.

Ví dụ 3: Cho đường thẳng d: y = (m - 1)x + m và d': y = (m2 - 1)x + 6

a) Tìm m để hai đường thẳng d, d’ song song với nhau

b) Tìm m để đường thẳng d cắt trục tung tại A, d’ cắt trục hoành tại B sao cho tam giác OAB cân tại O.

Hướng dẫn:

a) Với m = 1 ta có d: y = 1, d': y = 6 do đó hai đường thẳng này song song với nhau

Với m = -1 ta có d: y = -2x - 1, d': y = 6 suy ra hai đường thẳng này cắt nhau tại M((-7)/2; 6).

Với m ≠ ±1 khi đó hai đường thẳng trên là đồ thị của hàm số bậc nhất nên song song với nhau khi và chỉ khi

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Đối chiếu với điều kiện m ≠ ±1 suy ra m = 0.

Vậy m = 0 và m = 1 là giá trị cần tìm.

b) Ta có tọa độ điểm A là nghiệm của hệ

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Tọa độ điểm B là nghiệm của hệ

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Rõ ràng m = ±1 hệ phương trình (*) vô nghiệm

Với m ≠ ±1 ta có (*)

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Do đó tam giác OAB cân tại O ⇔ OA=OB

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy m = ±2 là giá trị cần tìm.

Cách xác định Hàm số bậc hai

1. Phương pháp giải.

Để xác định hàm số bậc hai ta là như sau

Gọi hàm số cần tìm là y = ax2 + bx + c, a ≠ 0. Căn cứ theo giả thiết bài toán để thiết lập và giải hệ phương trình với ẩn a, b, c từ đó suy ra hàm số cần tìm.

2. Các ví dụ minh họa.

Ví dụ 1. Xác định parabol (P) : y = ax2 + bx + c, a ≠ 0, biết:

a) (P) đi qua A (2; 3) và có đỉnh I (1; 2)

b) c = 2 và (P) đi qua B (3; -4) và có trục đối xứng là x = (-3)/2.

c) Hàm số y = ax2 + bx + c có giá trị nhỏ nhất bằng 3/4 khi x = 1/2 và nhận giá trị bằng 1 khi x = 1.

d) (P) đi qua M (4; 3) cắt Ox tại N (3; 0) và P sao cho ΔINP có diện tích bằng 1 biết hoành độ điểm P nhỏ hơn 3. (I là đỉnh của (P)).

Hướng dẫn:

a) Vì A ∈ (P) nên 3 = 4a + 2b + c

Mặt khác (P) có đỉnh I(1;2) nên:

(-b)/(2a) = 1 ⇔ 2a + b = 0

Lại có I ∈ (P) suy ra a + b + c = 2

Ta có hệ phương trình:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy (P) cần tìm là y = x2 - 2x + 3.

b) Ta có c = 2 và (P) đi qua B(3; -4) nên -4 = 9a + 3b + 2 ⇔ 3a + b = -2

(P) có trục đối xứng là x = (-3)/2 nên (-b)/(2a) = -3/2 ⇔ b = 3a

Ta có hệ phương trình:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy (P) cần tìm là y = (-1)x2/3 - x + 2.

c) Hàm số y = ax2 + bx + c có giá trị nhỏ nhất bằng 3/4 khi x = 1/2 nên ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hàm số y = ax2 + bx + c nhận giá trị bằng 1 khi x = 1 nên a + b + c = 1 (2)

Từ (1) và (2) ta có hệ phương trình:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Vậy (P) cần tìm là y = x2 - x + 1.

d) Vì (P) đi qua M (4; 3) nên 3 = 16a + 4b + c (1)

Mặt khác (P) cắt Ox tại N (3; 0) suy ra 0 = 9a + 3b + c (2)

Từ (1) và (2) ta có: 7a + b = 3 ⇒ b = 3 - 7a

(P) cắt Ox tại P nên P (t; 0) (t < 3) ⇒ NP = 3 - t

Theo định lý Viét ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ta có:

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Thay (*) vào (**) ta được:

(3 - t)3 = 8(4-t)/3 ⇔ 3t3 - 27t2 + 73t - 49 = 0 ⇔ t = 1

Suy ra a = 1; b = - 4; c = 3.

Vậy (P) cần tìm là y = x2 - 4x + 3.

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác: