Các dạng bài tập Phương trình, Hệ phương trình chọn lọc có lời giải - Toán lớp 10
Các dạng bài tập Phương trình, Hệ phương trình chọn lọc có lời giải
Với Các dạng bài tập Phương trình, Hệ phương trình chọn lọc có lời giải Toán lớp 10 tổng hợp các dạng bài tập, bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Phương trình, Hệ phương trình từ đó đạt điểm cao trong bài thi môn Toán lớp 10.
Tổng hợp lý thuyết chương Phương trình, Hệ phương trình
Các dạng bài tập chương Phương trình, Hệ phương trình
- Dạng 1: Tìm tập xác định của phương trình Xem chi tiết
- Bài tập tìm tập xác định của phương trình Xem chi tiết
- Dạng 2: Giải phương trình bằng phương pháp biến đổi tương đương Xem chi tiết
- Bài tập giải phương trình bằng phương pháp biến đổi tương đương Xem chi tiết
- Dạng 3: Giải và biện luận phương trình bậc nhất Xem chi tiết
- Bài tập giải và biện luận phương trình bậc nhất Xem chi tiết
- Dạng 4: Giải và biện luận phương trình bậc hai Xem chi tiết
- Bài tập giải và biện luận phương trình bậc hai Xem chi tiết
- Dạng 5: Nghiệm của phương trình bậc hai Xem chi tiết
- Bài tập về nghiệm của phương trình bậc hai Xem chi tiết
- Dạng 6: Phương trình chứa ẩn trong dấu giá trị tuyệt đối Xem chi tiết
- Bài tập phương trình chứa ẩn trong dấu giá trị tuyệt đối Xem chi tiết
- Dạng 7: Phương trình chứa ẩn ở mẫu Xem chi tiết
- Bài tập phương trình chứa ẩn ở mẫu Xem chi tiết
- Dạng 8: Phương trình chứa ẩn dưới dấu căn Xem chi tiết
- Bài tập phương trình chứa ẩn dưới dấu căn Xem chi tiết
- Dạng 9: Các dạng phương trình quy về phương trình bậc hai Xem chi tiết
- Bài tập phương trình quy về phương trình bậc hai Xem chi tiết
- Dạng 10: Giải và biện luận hệ phương trình bậc nhất Xem chi tiết
- Bài tập giải và biện luận hệ phương trình bậc nhất Xem chi tiết
- Dạng 11: Các dạng hệ phương trình đặc biệt Xem chi tiết
- Bài tập các dạng hệ phương trình đặc biệt Xem chi tiết
Cách tìm tập xác định của phương trình
Lý thuyết & Phương pháp giải
1. Khái niệm phương trình một ẩn
Cho hai hàm số y = f(x) và y = g(x) có tập xác định lần lượt là Df và Dg.
Đặt D = Df ∩ Dg. Mệnh đề chứa biến "f(x) = g(x)" được gọi là phương trình một ẩn, x gọi là ẩn và D gọi tập xác định của phương trình.
Số x0 ∈ D gọi là một nghiệm của phương trình f(x) = g(x) nếu "f(xo) = g(xo)" là một mệnh đề đúng.
2. Phương trình tương đương
Hai phương trình gọi là tương đương nếu chúng có cùng một tập nghiệm. Nếu phương trình f1(x) = g1(x) tương đương với phương trình f2(x) = g2(x) thì viết
f1(x) = g1(x) ⇔ f2(x) = g2(x)
Định lý 1: Cho phương trình f(x) = g(x) có tập xác định D và y = h(x) là một hàm số xác định trên D. Khi đó trên miền D, phương trình đã cho tương đương với mỗi phương trình sau:
(1): f(x) + h(x) = g(x) + h(x)
(2): f(x).h(x) = g(x).h(x) với h(x) ≠ 0, ∀x ∈ D.
3. Phương trình hệ quả
Phương trình f1(x) = g1(x) có tập nghiệm là S1 được gọi là phương trình hệ quả của phương trình f2(x) = g2(x) có tập nghiệm S2 nếu S1 ⊂ S2.
Khi đó viết:
f1(x) = g1(x) ⇒ f2(x) = g2(x)
Định lý 2: Khi bình phương hai vế của một phương trình, ta được phương trình hệ quả của phương trình đã cho: f(x) = g(x) ⇒ [f(x)]2 = [g(x)]2.
Lưu ý:
+ Nếu hai vế của 1 phương trình luôn cùng dấu thì khi bình phương 2 vế của nó, ta được một phương trình tương đương.
+ Nếu phép biến đổi tương đương dẫn đến phương trình hệ quả, ta phải thử lại các nghiệm tìm được vào phương trình đã cho để phát hiện và loại bỏ nghiệm ngoại lai.
4. Phương pháp giải tìm tập xác định của phương trình
- Điều kiện xác định của phương trình bao gồm các điều kiện để giá trị của f(x), g(x) cùng được xác định và các điều kiện khác (nếu có yêu cầu trong đề bài).
- Điều kiện để biểu thức
+ √(f(x)) xác định là f(x) ≥ 0
+ 1/f(x) xác định là f(x) ≠ 0
+ 1/√(f(x)) xác định là f(x) > 0
Ví dụ minh họa
Bài 1: Khi giải phương trình √(x2 - 5) = 2 - x (1), một học sinh tiến hành theo các bước sau:
Bước 1: Bình phương hai vế của phương trình (1) ta được:
x2 - 5 = (2 - x)2 (2)
Bước 2: Khai triển và rút gọn (2) ta được 4x = 9
Bước 3: (2) ⇔ x = 9/4
Vậy phương trình có một nghiệm là x = 9/4
Cách giải trên đúng hay sai? Nếu sai thì sai ở bước nào?
Hướng dẫn:
Vì phương trình (2) là phương trình hệ quả nên ta cần thay nghiệm x = 9/4 vào phương trình (1) để thử lại. Nên sai ở bước thứ 3.
Bài 2: Khi giải phương trìnhmột học sinh tiến hành theo các bước sau:
Bước 1:
Bước 2:
Bước 3: ⇔ x = 3 ∪ x = 4
Bước 4: Vậy phương trình có tập nghiệm là: T = {3; 4}
Cách giải trên sai từ bước nào?
Hướng dẫn:
Vì biến đổi tương đương mà chưa đặt điều kiên nên sai ở bước 2.
Bài 3: Tìm tập xác định của phương trình
Hướng dẫn:
Điều kiện xác định: x2 + 1 ≠ 0 (luôn đúng)
Vậy TXĐ: D = R.
Cách giải phương trình bằng phương pháp biến đổi tương đương
Lý thuyết & Phương pháp giải
- Phương trình tương đương: Hai phương trình f1(x) = g1(x) và f2(x) = g2(x) được gọi là tương đương nếu chúng có cùng tập nghiệm
- Kí hiệu là f1(x) = g1(x) ⇔ f2(x) = g2(x)
- Phép biến đổi không làm thay đổi tập nghiệm của phương trình gọi là phép biến đổi tương đương.
- Phương trình hệ quả: f2(x) = g2(x) gọi là phương trình hệ quả của phương trình f1(x) = g1(x) nếu tập nghiệm của nó chứa tập nghiệm của phương trình f1(x) = g1(x)
- Kí hiệu là f1(x) = g1(x) ⇒ f2(x) = g2(x)
- Để giải phương trình ta thực hiện các phép biến đổi để đưa về phương trình tương đương với phương trình đã cho đơn giản hơn trong việc giải nó. Một số phép biến đổi thường sử dụng:
+ Cộng (trừ) cả hai vế của phương trình mà không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương phương trình đã cho.
+ Nhân (chia) vào hai vế với một biểu thức khác không và không làm thay đổi điều kiện xác định của phương trình ta thu được phương trình tương đương với phương trình đã cho.
+ Bình phương hai vế của phương trình ta thu được phương trình hệ quả của phương trình đã cho.
Bình phương hai vế của phương trình (hai vế luôn cùng dấu) ta thu được phương trình tương đương với phương trình đã cho.
Ví dụ minh họa
Bài 1: Giải phương trình
Hướng dẫn:
Điều kiện:
Thử lại ta thấy cả x = 0 và x = 2 đều thỏa mãn phương trình
Vậy tập nghiệm của phương trình là S = {0;2}
Bài 2: Giải phương trình
Hướng dẫn:
Điều kiện:
Ta thấy x = 3 thỏa mãn điều kiện (*)
Nếu x ≠ 3. thì (*)
Do đó điều kiện xác định của phương trình là x = 3 hoặc x = 5/3
Thay x = 3 và x = 5/3 vào phương trình thấy chỉ có x = 3 thỏa mãn
Vậy phương trình đã cho có nghiệm duy nhất S = {3}
Bài 3: Giải phương trình
Hướng dẫn:
a. Điều kiện: x ≥ -1.
Ta có x = -1 là một nghiệm.
Nếu x > -1 thì √(x+1) > 0. Do đó phương trình tương đương
x2 - x - 2 = 0 ⇔ x = -1 hoặc x = 2.
Đối chiếu điều kiện ta được nghiệm của phương trình là x = -1, x = 2.
Vậy phương trình đã cho có hai nghiệm S = {-1; 2}
b. ĐKXĐ: x > 2
Với điều kiện đó phương trình tương đương với phương trình
x2 = 1 - (x - 2)⇔ x2 + x - 3 = 0
Đối chiếu với điều kiện ta thấy không có giá trị nào thỏa mãn
Vậy phương trình vô nghiệm
Cách giải phương trình chứa dấu giá trị tuyệt đối
Lý thuyết & Phương pháp giải
Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối(GTTĐ) ta tìm cách để khử dấu giá trị tuyệt đối, bằng cách:
– Dùng định nghĩa hoặc tính chất của GTTĐ.
– Bình phương hai vế.
– Đặt ẩn phụ.
Phương trình dạng |f(x)|=|g(x)| ta có thể giải bằng cách biến đổi tương đương như sau:
hoặc |f(x)| = |g(x)|⇔ f2(x) = g2(x)
- Đối với phương trình dạng |f(x)| = g(x)(*) ta có thể biến đổi tương đương như sau:
Hoặc
Ví dụ minh họa
Bài 1: Giải phương trình |3x - 2| = x2 + 2x + 3
Hướng dẫn:
Ta có:
* Nếu x ≥ 2/3 ⇒ PT ⇔ 3x - 2 = x2 + 2x + 3 ⇔ x2 - x + 5 = 0 pt vô nghiệm
* Nếu x < 2/3 ⇒ PT ⇔ -3x + 2 = x2 + 2x + 3 ⇔ x2 + 5x + 1 = 0
⇔ x = (-5 ± √21)/2 hai nghiệm này đều thỏa mãn x < 2/3
Vậy nghiệm của phương trình đã cho là x = (-5 ± √21)/2
Bài 2: Giải phương trình |x3 - 1| = |x2 - 3x + 2|
Hướng dẫn:
Hai về không âm bình phương hai vế ta có
Vậy tập nghiệm của phương trình đã cho là S = {1; -1 + √2; -1 - √2}
Bài 3: Giải phương trình
Hướng dẫn:
ĐKXĐ: x ≠ 1
Phương trình tương đương
Đặt t = |x - 1 - 3/(x-1)|
Suy ra
Phương trình trở thành t2 + 6 = 7t ⇔ t2 - 7t + 6 = 0 ⇔
Với t = 1 ta có
Với t = 6 ta có
Vậy phương trình có nghiệm là