Đại lượng tỉ lệ thuận (Lý thuyết Toán lớp 7) - Cánh diều
Haylamdo biên soạn và sưu tầm với tóm tắt lý thuyết Toán 7 Bài 7: Đại lượng tỉ lệ thuận hay nhất, chi tiết sách Cánh diều sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.
Đại lượng tỉ lệ thuận (Lý thuyết Toán lớp 7) - Cánh diều
Lý thuyết Đại lượng tỉ lệ thuận
1. Khái niệm
- Nếu đại lượng y liên hệ với đại lượng x theo công thức y = kx (với k là một hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k.
- Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k thì x tỉ lệ thuận với y theo hệ số tỉ lệ . Ta nói x và y là hai đại lượng tỉ lệ thuận với nhau.
Ví dụ:
a) Nếu y = 2x thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ 2. Khi đó x cũng tỉ lệ thuận với y theo hệ số tỉ lệ .
b) Chu vi đường tròn C và đường kính d liên hệ với nhau bởi công thức C = π . d. Khi đó C tỉ lệ thuận với d theo hệ số tỉ lệ là π (π ≈ 3,14).
2. Tính chất
Nếu hai đại lượng tỉ lệ thuận với nhau thì :
- Tỉ số hai giá trị tương ứng của chúng luôn không đổi ;
- Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
Cụ thể : Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ k. Với mỗi giá trị x1, x2, x3,… khác 0 của x, ta có một giá trị tương ứng y1, y2, y3, … của y. Khi đó :
Ví dụ: Khối lượng và thể tích của các thanh kim loại đồng chất là hai đại lượng tỉ lệ thuận với nhau. Biết hai thanh kim loại đồng chất có thể tích lần lượt là 10 cm3 và 15 cm3. Tính tỉ số khối lượng của hai thanh kim loại đó.
Hướng dẫn giải
Gọi m1 (gam) và m2 (gam) lần lượt là khối lượng của hai thanh kim loại có thể tích 10 cm3 và 15 cm3.
Áp dụng tính chất của đại lượng tỉ lệ thuận ta có .
3. Một số bài toán
Bài toán 1: Một máy in trong 5 phút in được 120 trang. Hỏi trong 3 phút máy in đó in được bao nhiêu trang?
Hướng dẫn giải
Gọi x (phút), y (trang) lần lượt là thời gian in và số trang mà máy in đã in được. Khi đó mỗi quan hệ giữa thời gian (x) và số trang in được (y) được cho bởi bảng sau:
Thời gian (x) |
x1 = 5 |
x2 = 3 |
Số trang in (y) |
y1 = 120 |
y2 = ? |
Ta có thời gian in tỉ lệ thuận với số trang in được theo hệ số tỉ lệ .
Suy ra . Vì thế y2 = 24 . 3 = 72.
Vậy trong 3 phút máy in in được 72 trang.
Bài toán 2: Hai thanh chì có thể tích là 12 cm3 và 17 cm3. Hỏi mỗi thanh nặng bao nhiêu gam, biết rằng thanh thứ hai nặng hơn thanh thứ nhất 56,5 g?
Hướng dẫn giải
Gọi khối lượng của hai thanh chì tương ứng là m1 gam và m2 gam. Khi đó m2 – m1 = 56,5 (g)
Do khối lượng và thể tích của vật thể là hai đại lượng tỉ lệ thuận với nhau. Do đó, ta có:
.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: .
Suy ra m1 = 12 . 11,3 = 135,6 ; m2 = 17 . 11,3 = 192,1.
Vậy hai thanh chì có khối lượng là 135,6 gam và 192,1 gam.
Bài tập Đại lượng tỉ lệ thuận
Bài 1 : Cho biết x và y là hai đại lượng tỉ lệ thuận và khi x = 2 thì y = –4.
a) Tìm hệ số tỉ lệ của y đối với x.
b) Viết công thức tính y theo x.
c) Điền số thích hợp vào ô trống trong bảng sau :
x |
–3 |
–1 |
1 |
5 |
y |
Hướng dẫn giải
a) Gọi k là hệ số tỉ lệ của y đối với x. Ta có y = kx.
Vì khi x = 2 thì y = – 4 nên – 4 = k . 2 hay k = (–4) : 2 = –2.
b) Ta có y = –2x.
c) Khi x = –3 thì y = (–2) .( –3) = 6.
Khi x = –1 thì y = (–2).( –1) = 2.
Khi x = 1 thì y = (–2) . 1 = –2.
Khi x = 5 thì y = (–2) . 5 = –10.
Vậy ta có bảng :
x |
–3 |
–1 |
1 |
5 |
y |
6 |
2 |
–2 |
–10 |
Bài 2: 5 mét dây đồng nặng 43 gam. Hỏi 10 km dây đồng như thế nặng bao nhiêu kilogam ?
Hướng dẫn giải:
Gọi x (gam) và y (mét) lần lượt là khối lượng và chiều dài của dây đồng.
Đổi 10 km = 10 000m
Khi đó mối quan hệ giữa khối lượng (x) và chiều dài (y) được cho bởi bảng sau :
Khối lượng (x) |
x1 = 43 |
x2 = ? |
Chiều dài (y) |
y1 = 5 |
y2 = 10 000 |
Ta có chiều dài tỉ lệ thuận với khối lượng của dây theo hệ số tỉ lệ
Suy ra . Vì thế (gam) = 86 (kg)
Vậy 10km dây đồng nặng 86 kg.
Bài 3: Học sinh của ba lớp 7 cần trồng và chăm sóc 24 cây xanh. Lớp 7A có 32 học sinh, lớp 7B có 28 học sinh, lớp 7C có 36 học sinh. Hỏi mỗi lớp phải trồng và chăm sóc bao nhiêu cây xanh, biết số cây xanh tỉ lệ thuận với số học sinh của lớp.
Hướng dẫn giải
Gọi số cây xanh mỗi lớp 7A, 7B, 7C cần trồng và chăm sóc lần lượt là x (cây), y (cây), z(cây).
Vì số cây tỉ lệ thuận với số học sinh của lớp nên ta có: và x + y + z = 24.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
.
Do đó x = 32 . 0,25 = 8
y = 28 . 0,25 = 7
z = 36 . 0,25 = 9
Vậy số cây mà mỗi lớp 7A, 7B, 7C cần trồng và chăm sóc lần lượt là 8 (cây); 7 (cây); 9 (cây).
Học tốt Đại lượng tỉ lệ thuận
Các bài học để học tốt Đại lượng tỉ lệ thuận Toán lớp 7 hay khác: