Trong không gian Oxyz cho mặt cầu (S): x^2 + y^2 + (z – 2)^2 = 9 và mặt phẳng (P): 2x + 2y – z + 8 = 0


Giải sách bài tập Toán 12 Bài tập ôn tập cuối năm - Kết nối tri thức

Bài 36 trang 54 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + (z – 2)2 = 9 và mặt phẳng (P): 2x + 2y – z + 8 = 0.

a) Xác định tâm I và bán kính R của mặt cầu (S).

b) Chứng minh rằng mặt phẳng (P) cắt mặt cầu (S). Tính bán kính r của đường tròn là giao tuyến của (P) và (S).

Lời giải:

a) Ta có (S): x2 + y2 + (z – 2)2 = 9

                ⇔ x2 + y2 + (z – 2)2 = 32

Vậy tâm mặt cầu có tọa độ I(0; 0; 2) và bán kính R = 3.

b) Khoảng cách từ I đến mặt phẳng (P) là:

d(I, (P)) = 2.0+2.02+822+22+12=2  < R = 3 nên mặt phẳng (P) cắt mắt cầu (S).

Bán kính của đường tròn là giao tuyến của (P) và (S) là:

r = R2d2=3222=5 .

Lời giải Sách bài tập Toán lớp 12 Bài tập ôn tập cuối năm hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: