Thống kê cho thấy tỉ lệ người mắc bệnh X trong dân cư là 20%
Thống kê cho thấy tỉ lệ người mắc bệnh X trong dân cư là 20%. Bệnh X có liên quan tới triệu chứng S.
Giải sách bài tập Toán 12 Bài tập ôn tập cuối năm - Kết nối tri thức
Bài 45 trang 55 SBT Toán 12 Tập 2: Thống kê cho thấy tỉ lệ người mắc bệnh X trong dân cư là 20%. Bệnh X có liên quan tới triệu chứng S.
a) Theo bác sĩ M nếu một người mắc bệnh X thì khả năng người đó có triệu chứng S là 90% và nếu người đó không mắc bệnh X thì chỉ có 15% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ M, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?
b) Theo bác sĩ N nếu một người mắc bệnh X thì 95% khả năng người đó có triệu chứng S và nếu người đó không mắc bệnh X thì chỉ có 10% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ N, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?
c) Theo bác sĩ P nếu một người mắc bệnh X thì 99% khả năng người đó có triệu chứng S. Còn nếu người đó không mắc bệnh X thì chỉ có 1% khả năng người đó có triệu chứng S mà thôi. Vậy theo bác sĩ P, nếu một người có triệu chứng S thì xác suất để người đó mắc bệnh X là bao nhiêu?
Lời giải:
Gọi A là biến cố: “Người đó mắc bệnh X”,
B là biến cố: “Người đó có triệu chứng S”.
Ta có: P(A) = 0,2.
Xác suất để một người có triệu chứng S mắc bệnh X là P(A | B).
a) Theo đánh giá của bác sĩ M, nếu một người mắc bệnh X thì 90% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,9; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 15% hay P(B | ˉA ) = 0,15.
Theo công thức Bayes, ta được:
P(A | B) = P(A).P(B|A)P(A).P(B|A)+P(ˉA).P(B|ˉA) = 0,2.0,90,2.0,9+(1−0,2).0,15 = 0,6.
Vậy bác sĩ M kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất 0,6.
b) Theo bác sĩ N thì nếu một người mắc bệnh X thì 95% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,95; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 10% hay P(B | ˉA) = 0,1.
Theo công thức Bayes, ta được:
P(A | B) = P(A).P(B|A)P(A).P(B|A)+P(ˉA).P(B|ˉA) = 0,2.0,950,2.0,95+(1−0,2).0,1 ≈ 0,74.
Vậy bác sĩ N kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất khoảng 0,74.
c) Theo bác sĩ P thì nếu một người mắc bệnh X thì 99% khả năng người đó có triệu chứng S, tức là P(B | A) = 0,99; nếu người đo không mắc bệnh X thì xác suất người đó có triệu chứng S là 1% hay P(B | ˉA ) = 0,01.
Theo công thức Bayes, ta được:
P(A | B) = P(A).P(B|A)P(A).P(B|A)+P(ˉA).P(B|ˉA) = 0,2.0,990,2.0,90+(1−0,2).0,01 ≈ 0,961.
Vậy bác sĩ P kết luận: Nếu một người có triệu chứng S thì người đó mắc bệnh X với xác suất khoảng 0,961.
Lời giải Sách bài tập Toán lớp 12 Bài tập ôn tập cuối năm hay khác:
Bài 27 trang 52 SBT Toán 12 Tập 2: Một hình chóp tứ giác đều ngoại tiếp hình cầu bán kính R ....
Bài 29 trang 53 SBT Toán 12 Tập 2: Tính: a) π4∫0sin2x2dx;b) 1∫0(3x−4x3)dx−2∫1(4x3−3x)dx; ....
Bài 32 trang 53 SBT Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi các đường y = √x − 2 ....
Bài 34 trang 53 SBT Toán 12 Tập 2: Cho tứ diện đều ABCD có cạnh bằng a. Tính (→AB+→AD).→BC ....
Bài 35 trang 53 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho đường thẳng ∆: x−21=y+22=z−32 ....
Bài 38 trang 54 SBT Toán 12 Tập 2: Trong không gian Oxyz, cho hai điểm A(1; 2; 0) và B(3; 2; 2) ....