Bộ bài tập trắc nghiệm Giải tích 12 có đáp án năm 2024
Bộ bài tập trắc nghiệm Giải tích 12 có đáp án năm 2024
Haylamdo biên soạn và sưu tầm tổng hợp 500 câu hỏi trắc nghiệm Giải tích lớp 12 năm 2023 chọn lọc, có đáp án chi tiết với các câu hỏi trắc nghiệm đa dạng đầy đủ các mức độ nhận biết, thông hiểu, vận dụng được biên soạn theo từng bài học sẽ giúp học sinh ôn luyện, củng cố lại kiến thức để đạt điểm cao trong các bài thi môn Giải tích lớp 12.
- Trắc nghiệm Sự đồng biến nghịch biến của hàm số có đáp án năm 2023
- Trắc nghiệm Sự đồng biến nghịch biến của hàm số có đáp án năm 2023 (phần 2)
- Trắc nghiệm Cực trị của hàm số có đáp án năm 2023
- Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)
- Trắc nghiệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án năm 2023
- Trắc nghiệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án năm 2023 (phần 2)
- Trắc nghiệm Đường tiệm cận có đáp án năm 2023
- Trắc nghiệm Đường tiệm cận có đáp án năm 2023 (phần 2)
- Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị hàm số có đáp án năm 2023
- Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị hàm số có đáp án năm 2023 (phần 2)
- Trắc nghiệm Ôn tập chương 1 Giải tích 12 có đáp án có đáp án năm 2023
- Trắc nghiệm Ôn tập chương 1 Giải tích 12 có đáp án có đáp án năm 2023 (phần 2)
- Đề kiểm tra 1 tiết Giải tích 12 Chương 1 có đáp án năm 2023
- Trắc nghiệm Lũy thừa có đáp án năm 2023
- Trắc nghiệm Lũy thừa có đáp án năm 2023 (phần 2)
- Trắc nghiệm Hàm số lũy thừa có đáp án năm 2023
- Trắc nghiệm Hàm số lũy thừa có đáp án năm 2023 (phần 2)
- Trắc nghiệm Lôgarit có đáp án năm 2023
- Trắc nghiệm Lôgarit có đáp án năm 2023 (phần 2)
- Trắc nghiệm Hàm số mũ và hàm số lôgarit có đáp án năm 2023
- Trắc nghiệm Hàm số mũ và hàm số lôgarit có đáp án năm 2023 (phần 2)
- Trắc nghiệm Phương trình mũ và phương trình lôgarit có đáp án năm 2023
- Trắc nghiệm Phương trình mũ và phương trình lôgarit có đáp án năm 2023 (phần 2)
- Trắc nghiệm Bất phương trình mũ và bất phương trình lôgarit có đáp án năm 2023
- Trắc nghiệm Bất phương trình mũ và bất phương trình lôgarit có đáp án năm 2023 (phần 2)
- Trắc nghiệm Ôn tập chương 2 Giải tích 12 có đáp án có đáp án năm 2023
- Trắc nghiệm Ôn tập chương 2 Giải tích 12 có đáp án có đáp án năm 2023 (phần 2)
- Đề kiểm tra 1 tiết Giải tích 12 Chương 2 có đáp án năm 2023
- Trắc nghiệm Nguyên hàm có đáp án năm 2023
- Trắc nghiệm Nguyên hàm có đáp án năm 2023 (phần 2)
- Trắc nghiệm Tích phân có đáp án năm 2023
- Trắc nghiệm Tích phân có đáp án năm 2023 (phần 2)
- Trắc nghiệm Ứng dụng hình học của tích phân có đáp án năm 2023
- Trắc nghiệm Ứng dụng hình học của tích phân có đáp án năm 2023 (phần 2)
- Trắc nghiệm Ôn tập chương 3 Giải tích 12 có đáp án năm 2023
- Trắc nghiệm Ôn tập chương 3 Giải tích 12 có đáp án năm 2023 (phần 2)
- Đề kiểm tra 1 tiết Giải tích 12 Chương 3 có đáp án năm 2023
- Trắc nghiệm Số phức có đáp án năm 2023
- Trắc nghiệm Số phức có đáp án năm 2023 (phần 2)
- Trắc nghiệm Cộng, trừ và nhân số phức có đáp án năm 2023
- Trắc nghiệm Cộng, trừ và nhân số phức có đáp án năm 2023 (phần 2)
- Trắc nghiệm Phép chia số phức có đáp án năm 2023
- Trắc nghiệm Phép chia số phức có đáp án năm 2023 (phần 2)
- Trắc nghiệm Phương trình bậc hai với hệ số thực có đáp án năm 2023
- Trắc nghiệm Phương trình bậc hai với hệ số thực có đáp án năm 2023 (phần 2)
- Trắc nghiệm Ôn tập chương 4 Giải tích 12 có đáp án năm 2023
- Trắc nghiệm Ôn tập chương 4 Giải tích 12 có đáp án năm 2023 (phần 2)
- Trắc nghiệm Ôn tập Giải tích 12 có đáp án năm 2023
- Trắc nghiệm Ôn tập Giải tích 12 có đáp án năm 2023 (phần 2)
- Trắc nghiệm Đề kiểm tra Học kì 2 Giải tích 12 có đáp án năm 2023
- Tổng hợp 1000 bài tập Toán có lời giải
Trắc nghiệm Sự đồng biến nghịch biến của hàm số có đáp án năm 2023
Câu 1: Cho đồ thị hàm số với x ∈ [- π/2 ; 3π/2] như hình vẽ.
Tìm khoảng đồng biến của hàm số y = sinx với x ∈ [- π/2 ; 3π/2]
Trên khoảng (-π/2; π/2) đồ thị hàm số đi lên từ trái sang phải.
Trên khoảng (π/2 ; 3π/2) đồ thị hàm số đi xuống từ trái sang phải.
Do đó hàm số đồng biến trên khoảng (-π/2; π/2)
Chọn đáp án A.
Câu 2: Cho đồ thị hàm số y = -x3 như hình vẽ. Hàm số y = -x3 nghịch biến trên khoảng:
A. (-1;0) B. (-∞;0)
C. (0;+∞) D. (-1;1)
Trên khoảng (0; +∞) đồ thị hàm số đi xuống từ trái sang phải.
Do đó hàm số nghịch biến trên khoảng (0;+∞), Chọn đáp án C.
Câu 3: Cho đồ thị hàm số y = -2/x như hình vẽ. Hàm số y = -2/x đồng biến trên
A. (-∞;0) B. (-∞;0) ∪ (0;+∞)
C. R D. (-∞;0) và (0;+∞)
Đồ thị hàm số đi lên từ trái sang phải trên hai khoảng (-∞;0) và (0;+∞)
Chọn đáp án D.
Ghi chú. Những sai lầm có thể gặp trong quá trình làm bài:
- Không chú ý tập xác định nên chọn đáp án C.
- Không chú ý định nghĩa của hàm đồng biến nên chọn đáp án B.
Câu 4: Cho hàm số f(x) có đạo hàm f'(x) = √x(x-1)(x+2)2
Kết luận nào sau đây là đúng?
A. Hàm số f(x) nghịch biến trên khoảng (-∞;1).
B. Hàm số f(x) đồng biến trên các khoảng (-∞;0) và (1;+∞).
C. Hàm số f(x) đồng biến trên các khoảng và (1;+∞).
D. Hàm số f(x) đồng biến trên các khoảng (1;+∞).
Điều kiện: x > 0
Bảng xét dấu :
Vậy f(x) đồng biến trên khoảng (1;+∞) và nghịch biến trên khoảng (0;1). Chọn đáp án D.
Câu 5: Khoảng nghịch biến của hàm số y = x3/3 - 2x2 + 3x + 5 là:
A. (1;3) B.(-∞; 1) ∪ (3; +∞) C. (-∞; 1) và (3; +∞) D. (1;+∞)
Bảng xét dấu y’ :
Vậy hàm số nghịch biến trên khoảng (1;3). Chọn đáp án A.
Câu 6: Cho hàm số y = x4 - 2x2 + 3 . Kết luận nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (-∞; -1) ∩ (0; 1)
B. Hàm số đồng biến trên khoảng (-1; 0) ∪ (1; +∞)
C. Hàm số nghịch biến trên khoảng (-∞; -1) ∪ (0; 1)
D. Hàm số đồng biến trên các khoảng (-1; 0) và (1; +∞)
Bảng xét dấu y’:
Từ đó ta có: Hàm số đồng biến trên các khoảng (-1; 0) và (1; +∞) , nghịch biến trên các khoảng (-∞; -1) và (0; 1) . Chọn đáp án D.
Câu 7: Cho hàm số y = sin2x - 2x. Hàm số này
A. Luôn đồng biến trên R B. Chỉ đồng biến trên khoảng (0; +∞)
C. Chỉ nghịch biến trên (-∞; -1) D. Luôn nghịch biến trên R
Tập xác định D = R
Ta có : y' = 2.cos2x - 2 = 2(cos2x - 1) ≤ 0; ∀ x
(vì -1 ≤ cos2x ≤ 1)
Vậy hàm số luôn nghịch biến trên R
Chọn đáp án D.
Câu 8: Trong các hàm số sau, hàm số nào chỉ đồng biến trên khoảng (-∞; 1) ?
Câu 9: Tìm m để hàm số
luôn nghịch biến trên khoảng xác định.
A.-2 < m ≤ 2 B. m < -2 hoặc m > 2
C. -2 < m < 2 D. m ≠ ±2
Tập xác định
Hàm số nghịch biến trên từng khoảng
khi và chỉ khi
Suy ra m2 - 4 < 0 hay -2 < m < 2. Chọn đáp án C.
Câu 10: Cho hàm số y = -x3 + 3x2 + 3mx - 1, tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0; +∞)
A. m < 1 B. m ≥ 1 C. m ≤ -1 D. m ≥ -1
Ta có y' = -3x2 + 6x + 3m. Hàm số nghịch biến trên khoảng (0; +∞) nếu y' ≤ 0 trên khoảng (o; +∞)
Cách 1: Dùng định lí dấu tam thức bậc hai.
Xét phương trình -3x2 + 6x + 3m. Ta có Δ' = 9(1 + m)
TH1: Δ' ≤ 0 => m ≤ -1 khi đó, -3x2 + 6x + 3m < 0 nên hàm số nghịch biến trên R .
TH2: Δ' > 0 => m > -1; y' = 0 có hai nghiệm phân biệt là x = 1 ±√(1+m) .
Hàm số nghịch biến trên (0; +∞) <=> 1 + √(1+m) ≤ 0, vô lí.
Từ TH1 và TH2, ta có m ≤ -1
Cách 2: Dùng phương pháp biến thiên hàm số.
Ta có y' = -3x2 + 6x + 3m ≤ 0, ∀x > 0 <=> 3m ≤ 3x2 - 6x, ∀x > 0
Từ đó suy ra 3m ≤ min(3x2 - 6x) với x > 0
Mà 3x2 -6x = 3(x2 -2x + 1) - 3 = 3(x - 1)2 - 3 ≥ -3 ∀ x
Suy ra: min( 3x2 – 6x) = - 3 khi x= 1
Do đó 3m ≤ -3 hay m ≤ -1. Chọn đáp án C.
Câu 11: Cho đồ thị hàm số có dạng như hình vẽ.
Hàm số đồng biến trên:
A. (0;1)
B. (1;3)
C. (0; 1) ∪ (1; 3)
D. (0;1) và (1;3).
Trên khoảng (0; 1) đồ thị hàm số đi lên từ trái qua phải
Trên khoảng (1; 3) đồ thị hàm số đi lên từ trái qua phải
Đồ thị hàm số bị gián đoạn tại x = 1. Do đó hàm số đồng biến trên từng khoảng (0; 1) và (1; 3)
Câu 12: Hỏi hàm số
đồng biến trên các khoảng nào?
A. (-∞ ; +∞) B. (-∞; -5)
C. (-5; +∞) ∪ (1; 3) D. (0; 1) và (1; 3)
Hàm số xác định ∀x ≠ -5
y' xác định ∀x ≠ -5 . Bảng xét dấu y’:
Vậy hàm số đồng biến trên các khoảng (-∞; -5) và (-5; +∞)
Câu 13: Tìm khoảng đồng biến của hàm số y = 2x3 - 9x2 + 12x + 3
A.(-∞; 1) ∪ (2; +∞) B. (-∞ 1] và [2; +∞)
C. (-∞; 1) và (2; +∞) D. (1;2)
Ta có
Bảng xét dấu đạo hàm:
Hàm số đồng biến trên các khoảng (-∞; 1) và (2; +∞)
Câu 14: Khoảng nghịch biến của hàm số y = x4 - 2x2 - 1 là:
A. (-∞; -1) và (0; 1) B. (-∞; 0) và (1; +∞)
C. (-∞; -1) ∪ (0; 1) D. (0;1)
Ta có
Bảng xét dấu đạo hàm
Hàm số nghịch biến trên các khoảng (-∞; -1) và (0; 1)
Câu 15: Cho hàm số
Khẳng định nào sau đây là khẳng định đúng?
A. Hàm số (1) nghịch biến trên R\{1}
B. Hàm số (1) nghịch biến trên (-∞; 1) và (1; +∞)
C. Hàm số (1) nghịch biến trên (-∞; 1) ∪ (1; +∞)
D. Hàm số (1) đồng biến trên (-∞; 1) và (1; +∞)
Hàm số
xác định ∀x ≠ 1
Ta có:
xác định ∀x ≠ 1
Bảng xét dấu đạo hàm
Hàm số nghịch biến trên các khoảng (-∞ 1) và (1; +∞)
Trắc nghiệm Cực trị của hàm số có đáp án năm 2023
Câu 1: Cho hàm số y = f(x) có đồ thị như hình vẽ. Điểm cực đại của đồ thị hàm số là
A. M(0; 2) B. N(-2; -14)
C. P(2; -14) D. N(-2; -14) và P(2; -14)
Dựa vào định nghĩa cực trị.
Chọn đáp án A.
Câu 2: Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên
Mệnh đề nào sau đây là đúng?
A. Hàm số có đúng hai cực trị
B. Hàm số có điểm cực tiểu là -2
C. Hàm số có giá trị cực đại bằng 0.
D. Hàm số đạt cực đại tại x = 0 đạt cực tiểu tại x = -1 và x = 1
Dựa vào định nghĩa cực trị và bảng biến thiên.
Chọn đáp án D.
Câu 3: Tìm a, b, c sao cho hàm số y = x3 + ax2 + bx + c có giá trị bằng 0 khi x = 1 và đạt cực trị khi bằng 0 khi x = -1 .
Sử dụng giả thiết và điều kiện cần của cực trị ta có
y(1) = 0; y'(-1) = 0; y(-1) = 0
Trong đó , y' = 3x2 + 2ax + b
Từ đó suy ra:
Với a = 1; b = -1; c = -1 thì hàm số đã cho trở thành y = x3 + x2 - x - 1
Ta có y' = 3x2 + 2x - 1, y'' = 6x + 2. Vì y''=(-1) = -4 < 0 nên hàm số đạt cực đại tại x = -1 . Vậy a = 1; b = -1; c = -1 là các giá trị cần tìm.
Chọn đáp án C.
Câu 4: Trong các mệnh đề sau, mệnh đề nào đúng?
A. Nếu f'(x0) = 0 thì x0 là điểm cực trị của hàm số.
B. Nếu f'(x0) = 0 thì x0 là điểm cực đại của hàm số.
C. Nếu f'(x0) = 0 và f''(x0) > 0 thì x0 là điểm cực đại của hàm số.
D. Nếu f(x) có đạo hàm tại x0 và f’(x) đổi dấu khi x đi qua x0 thì x0 là điểm cực trị của hàm số.
Xem lại điều kiện cần và đủ để có cực trị của hàm số.
Chọn đáp án D.
Câu 5: Tìm tất cả các giá trị của tham số m để hàm số y = x3 - 2x2 +mx + 1 đạt cực đại tại x = 1.
A.m = -1 B. m = 1 C. m = 4/3 D. Không tồn tại.
Ta có y' = 3x2 - 4x + m
Hàm số đạt cực trị tại x = 1 thì y'(1) = 0 ⇒ 3.12 - 4.1 + m = 0 ⇒ m = 1
Với m = 1 thì hàm số đã cho trở thành y = x3 - 2x2 + x + 1
Ta có y' = 3x2 - 4x + 1, y'' = 6x - 4 Vì y''(1) = 2 > 0 nên hàm số đạt cực tiểu tại x = 1.
Do vậy không có m thỏa mãn. Chọn đáp án D.
Chú ý. Sai lầm có thể gặp phải: khi giải y'(1) = 0 => m = 1 đã vội kết luận mà không kiểm tra lại, dẫn đến chọn đáp án B.
Câu 6: Cho hàm số y = x3 - 2x2 + 3. Điểm M(0; 3) là:
A. Cực đại của hàm số C. Điểm cực đại của đồ thị hàm số
B. Điểm cực đại của hàm số D. Điểm cực tiểu của đồ thị hàm số
Ta có: y' = 3x2 -4x; y'' = 6x - 4;
y''(0) = -4 < 0
Do đó, điểm M(0;3) là điểm cực đại của đồ thị hàm số.
Chọn đáp án C.
Chú ý. Phân biệt các khái niệm: cực trị, điểm cực trị của hàm số, điểm cực trị của đồ thị hàm số.
Câu 7: Tìm điểm cực đại của hàm số y = sin2x + √3cosx + 1 với x ∈ (0; π)
A. x = 0 B. x = π C. π/6 D. π/3
Ta có:
Chọn đáp án C.
Câu 8: Có bao nhiêu mệnh đề đúng trong các phát biểu sau?
1. Hàm số không có đạo hàm tại x = 0.
2. Hàm số không liên tục tại x = 0.
3. Hàm số không có cực trị tại x = 0.
4. Hàm số đạt cực trị tại x = 0.
A. 0 B. 1 C. 2 D. 3.
Đồ thị hàm số y = |x| có dạng hình vẽ.
Từ đồ thị trong hình ta có hàm số y = |x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó. Sử dụng định nghĩa cực trị ta có hàm số y = |x| đạt cực tiểu tại x = 0
Do đó mệnh đề 1 và 4 đúng. Chọn đáp án C
Câu 9: Cho hàm số y = -3x4 - 2x3 + 3
Hàm số có
A. Một cực đại và hai cực tiểu
B. Một cực tiểu và hai cực đại
C. Một cực đại và không có cực tiểu
D. Một cực tiểu và một cực đại.
Ta có y' = -12x3 - 4x
Xét y'=0 => x = 0
Hàm số chỉ có một cực đại tại x = 0. Chọn đáp án C.
Câu 10: Cho hàm số y = x4 - 2(m - 1)x2 + m2. Tìm m để hàm số có 3 điểm cực trị là 3 đỉnh của 1 tam giác vuông
A. m = 0
B.m= 1
C. m= -1
D. m = 2
C. y = a2x4 - 2x2 + 3 D. y = x4 + 2x2 + 3a
Câu 11: Cho hàm số f có đạo hàm là f'(x) = x(x+1)2(x-2)4 với mọi x ∈ R. Số điểm cực trị của hàm số f là:
A. 0 B. 1 C. 2 D.3
Ta có
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 0. Vậy hàm số có một cực trị
Câu 12: Điểm cực đại của hàm số y = -x3 - 3x2 + 1 là:
A. x = 0 B. x = -2 C. x = 2 D. Không tồn tại
Ta có y' = -3x2 - 6x, y'' = -6x - 6 .
Xét
y''(0) = -6 < 0; y''(-2) = 6 > 0
Do đó hàm số đạt cực đại tại x = 0
Câu 13: Điểm cực tiểu của hàm số y = x4 + 4x2 + 2 là:
A. x = 1 B. x = √2 C. x = 0 D. Không tồn tại
Ta có: y' = 4x3 + 8x, y'' = 12x2 + 8. y' = 0 <=> 4x(x2 + 2) = 0 <=> x = 0
y''(0) = 2 > 0. Do đó hàm số đạt cực tiểu tại x = 0
Câu 14: Cho hàm số y = x3 - 2x2 - 1 (1) và các mệnh đề
(1) Điểm cực trị của hàm số (1) là x = 0 hoặc x = 4/3
(2) Điểm cực trị của hàm số (1) là x = 0 và x = 4/3
(3) Điểm cực trị của đồ thị hàm số (1) là x = 0 và x = 4/3
(4) Cực trị của hàm số (1) là x = 0 và x = 4/3
Trong các mệnh đề trên, số mệnh đề sai là:
A.0 B.1 C.2 D.3
Ta có: y' = 3x2 - 4x, y'' = 6x - 4;
y''(0) = -4 < 0; y''(4/3) = 4 > 0. Do đó hàm số có hai cực trị là x = 0 và x = 4/3
Các mệnh đề (1); (2) và (3) sai;mệnh đề (4) đúng.
Câu 15: Cho hàm số y = x4 - 2x2 - 2 (2). Khẳng định nào sau đây là đúng?
A. Hàm số (2) đạt cực đại tại y = -2
B. Hàm số (2) đạt giá trị cực đại tại y = -2
C. Đồ thị hàm số (2) có điểm cực đại là y = -2
D. Hàm số (2) có giá trị cực đại là y = -2
Ta có: y' = 4x3 - 4x, y'' = 12x2 - 4
y''(-1) = 8 > 0; y''(1) = 8 > 0
Do đó hàm số đạt cực đại tại x = 0 và có giá trị cực đại là y(0)=-2
Trắc nghiệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án năm 2023
Câu 1: Giá trị lớn nhất của hàm số f(x) = -x2 + 4 là:
A. 0 B. 4 C.2 D. Không có đáp án.
Tập xác định: D = R. Ta có
Do đó giá trị lớn nhất của hàm số f(x) là 4 đạt được khi x = 0. Chọn đáp án B.
Câu 2: Giá trị lớn nhất của hàm số
đạt được khi x nhận giá trị bằng:
A. 1 B. 5 C. 0 D. Không có đáp án.
Tập xác định: D = R \ {1}
=> không tồn tại x thỏa mãn. Do đó hàm số không có giá trị lớn nhất. Chọn đáp án D.
Câu 3: Giá trị lớn nhất của hàm số y = x(5 - 2x)2 trên [0; 3] là:
Vậy GTLN của hàm số trên [0; 3] là 250/27 đạt được khi x = 5/6. Chọn đáp án C.
Câu 4: Giá trị lớn nhất của hàm số
có đồ thị như hình bên là
A. 3 B. 7
B. -1 D. 4
Chọn đáp án D.
Chú ý. Cần phân biệt giá trị lớn nhất của hàm số và cực đại của hàm số.
Câu 5: Một công ti quản lí chuẩn bị xây dựng một khu chung cư mới. Họ tính toán nếu tòa nhà có x căn hộ thì chi phí bảo trì của tòa nhà là: C(x) = 4000 - 14x + 0,04x2. Khu đất của họ có thể xây được tòa nhà chứa tối đa 300 căn hộ. Hỏi họ nên xây dựng tòa nhà có bao nhiêu căn hộ để chi phí bảo trì của tòa nhà là nhỏ nhất?
A. 150 B.175 C. 300 D.225
Ta có x là số căn hộ. Rõ ràng x phải thỏa mãn điều kiện 0 ≤ x ≤ 300. Chi phí bảo trì tòa nhà C(x) = 4000 - 14x + 0,04x2
Ta phải tìm 0 ≤ xo ≤ 300 sao cho C(xo) có giá trị nhỏ nhất.
Ta có C'(x) = -14 + 0,08x, 0 ≤ x ≤ 300. C'(x) = 0 <=> x = 175
Trên đoạn [0; 300] ta có C(0) = 4000; C(175) = 2775; C(300) = 3400
Từ đó ta thấy C(x) đạt giá trị nhỏ nhất khi x = 175. Chọn đáp án B.
Câu 6: GTLN của hàm số y = -x2 + 4x + 7 đạt được khi x bằng:
A. 11 B. 4
C. 7 D. 2
y' = -2x + 4 = 0 <=> x = 2
Dựa vào bảng biến thiên; GTLN của hàm số là 11 khi x= 2.
Chọn đáp án D.
Chú ý. Cần phân biệt GTLN của hàm số (max y) với giá trị x để hàm số đạt được GTLN.
Câu 7: GTLN của hàm số
trên khoảng (0; 4) đạt được
A. x = 1 B. x = -1 C. x = √2 D. Không tồn tại
Xét
Ta có y' = 0 => x = 1
Vậy hàm số có GTLN bằng √2 khi x = 1 . Chọn đáp án A.
Câu 8: Tìm GTLN của hàm số
A. 0 B. +∞ C. Không tồn tại D. Không có đáp án
Tập xác định R.
Ta có bảng biến thiên:
Hàm số không có GTLN trên R . Chọn đáp án C.
Câu 9: Một hành lang giữa hai tòa tháp có hình dạng một hình lăng trụ đứng. Hai mặt bên ABB’A’ và ACC’A’ là hai tấm kính hình chữ nhật dài 20m, rộng 5m. Với độ dài xấp xỉ nào của BC thì thể tích hành lang này lớn nhất
A. 6m B. 7m
C. 8m D. 9m.
Thể tích hình lăng lớn nhất khi và chỉ khi diện tích ΔABC lớn nhất.
Gọi độ dài BC là x (m). Kẻ AH ⊥ BC.
Bài toán đưa về tìm x ∈ (0; 10) để hàm số y = x√(100-x2) có giá trị lớn nhất.
Ta có:
Bảng biến thiên:
Hàm số đạt giá trị lớn nhất tại x = 5√2 ≈ 7. Chọn đáp án B.
Câu 10: Tìm GTNN của hàm số y = x2 - 3x + 5
A. 3/2 B. 11/4 C. 3 D. 5
Lập bảng biến thiên ta được, hàm số đạt giá trị nhỏ nhất tại:
Câu 11: GTLN của hàm số y = sin2x - √3cosx trên đoạn [0; π] là
A. 1 B. 7.4 C. 2 D. 1/4
Câu 12: GTNN của hàm số y = x3 + 3x2 - 9x + 1 trên đoạn [-4;4] là
A. -4 B. 1 C. 4 D. -1
Xét hàm số y = x3 + 3x2 - 9x + 1 trên đoạn [-4;4].
Ta có:
y(1) = -4, y(-3) = 28; y(4) = 77; y(-4) = 21
GTNN của hàm số y = X3 - 9x + 1 trên đoạn [-4;4] là -4 khi x= 1
Câu 13: GTLN của hàm số y = x4 - 8x2 + 16 trên đoạn [-1;3] là
A. 0 B. 15 C. 25 D. 30
Xét hàm số y = x4 - 8x2 + 16 trên đoạn [-1;3]
y(0) = 16, y(2) = 0; y(-1) = 9; y(3) = 25
GTLN của hàm số y = x4 - 8x + 16 trên đoạn [-1;3] là 25 khi x = 3.
Câu 14: GTNN của hàm số y = x/(x+2) trên nửa khoảng (-2;4] là
A. 0 B. 1 C.2/3 D. Không tồn tại
Xét hàm số
Ta có bảng biến thiên
Hàm số không có GTNN
Câu 15: GTNN của hàm số y = x + 2 + 1/(x - 1) trên khoảng (1; +∞) là:
A. Không tồn tại B. 3/2 C. 2 D = 7/4
Xét hàm số
Trên (1; +∞) y' = 0 => x = 2. Bảng biến thiên
Giá trị nhỏ nhất của hàm số là y=5.