X

500 bài tập trắc nghiệm Giải tích 12

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)


Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Với bộ Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2) sẽ giúp học sinh hệ thống lại kiến thức bài học và ôn luyện để đạt kết quả cao trong các bài thi môn Giải tích lớp 12.

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Câu 1: Tìm tất cả các giá trị của tham số m để hàm số y = x3 - 2x2 +mx + 1 đạt cực đại tại x = 1.

A.m = -1    B. m = 1     C. m = 4/3     D. Không tồn tại.

Ta có y' = 3x2 - 4x + m

Hàm số đạt cực trị tại x = 1 thì y'(1) = 0 ⇒ 3.12 - 4.1 + m = 0 ⇒ m = 1

Với m = 1 thì hàm số đã cho trở thành y = x3 - 2x2 + x + 1

Ta có y' = 3x2 - 4x + 1, y'' = 6x - 4 Vì y''(1) = 2 > 0 nên hàm số đạt cực tiểu tại x = 1.

Do vậy không có m thỏa mãn. Chọn đáp án D.

Chú ý. Sai lầm có thể gặp phải: khi giải y'(1) = 0 => m = 1 đã vội kết luận mà không kiểm tra lại, dẫn đến chọn đáp án B.

Câu 2: Cho hàm số y = x3 - 2x2 + 3. Điểm M(0; 3) là:

A. Cực đại của hàm số     C. Điểm cực đại của đồ thị hàm số

B. Điểm cực đại của hàm số     D. Điểm cực tiểu của đồ thị hàm số

Ta có: y' = 3x2 -4x; y'' = 6x - 4;

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

y''(0) = -4 < 0

Do đó, điểm M(0;3) là điểm cực đại của đồ thị hàm số.

Chọn đáp án C.

Chú ý. Phân biệt các khái niệm: cực trị, điểm cực trị của hàm số, điểm cực trị của đồ thị hàm số.

Câu 3: Tìm điểm cực đại của hàm số y = sin2x + √3cosx + 1 với x ∈ (0; π)

A. x = 0     B. x = π     C. π/6    D. π/3

Ta có:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Chọn đáp án C.

Câu 4: Có bao nhiêu mệnh đề đúng trong các phát biểu sau?

1. Hàm số không có đạo hàm tại x = 0.

2. Hàm số không liên tục tại x = 0.

3. Hàm số không có cực trị tại x = 0.

4. Hàm số đạt cực trị tại x = 0.

A. 0     B. 1     C. 2     D. 3.

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Đồ thị hàm số y = |x| có dạng hình vẽ.

Từ đồ thị trong hình ta có hàm số y = |x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó. Sử dụng định nghĩa cực trị ta có hàm số y = |x| đạt cực tiểu tại x = 0

Do đó mệnh đề 1 và 4 đúng. Chọn đáp án C

Câu 5: Cho hàm số y = -3x4 - 2x3 + 3

Hàm số có

A. Một cực đại và hai cực tiểu

B. Một cực tiểu và hai cực đại

C. Một cực đại và không có cực tiểu

D. Một cực tiểu và một cực đại.

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Ta có y' = -12x3 - 4x

Xét y'=0 => x = 0

Hàm số chỉ có một cực đại tại x = 0. Chọn đáp án C.

Câu 6: Cho hàm số y = x4 - 2(m - 1)x2 + m2. Tìm m để hàm số có 3 điểm cực trị là 3 đỉnh của 1 tam giác vuông

A. m = 0

B.m= 1

C. m= -1

D. m = 2

C. y = a2x4 - 2x2 + 3     D. y = x4 + 2x2 + 3a

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Câu 7: Cho hàm số f có đạo hàm là f'(x) = x(x+1)2(x-2)4 với mọi x ∈ R. Số điểm cực trị của hàm số f là:

A. 0     B. 1     C. 2     D.3

Ta có

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Bảng biến thiên

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 0. Vậy hàm số có một cực trị

Câu 8: Điểm cực đại của hàm số y = -x3 - 3x2 + 1 là:

A. x = 0     B. x = -2     C. x = 2    D. Không tồn tại

Ta có y' = -3x2 - 6x, y'' = -6x - 6 .

Xét

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

y''(0) = -6 < 0; y''(-2) = 6 > 0

Do đó hàm số đạt cực đại tại x = 0

Câu 9: Điểm cực tiểu của hàm số y = x4 + 4x2 + 2 là:

A. x = 1     B. x = √2     C. x = 0     D. Không tồn tại

Ta có: y' = 4x3 + 8x, y'' = 12x2 + 8. y' = 0 <=> 4x(x2 + 2) = 0 <=> x = 0

y''(0) = 2 > 0. Do đó hàm số đạt cực tiểu tại x = 0

Câu 10: Cho hàm số y = x3 - 2x2 - 1 (1) và các mệnh đề

(1) Điểm cực trị của hàm số (1) là x = 0 hoặc x = 4/3

(2) Điểm cực trị của hàm số (1) là x = 0 và x = 4/3

(3) Điểm cực trị của đồ thị hàm số (1) là x = 0 và x = 4/3

(4) Cực trị của hàm số (1) là x = 0 và x = 4/3

Trong các mệnh đề trên, số mệnh đề sai là:

A.0     B.1     C.2     D.3

Ta có: y' = 3x2 - 4x, y'' = 6x - 4;

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

y''(0) = -4 < 0; y''(4/3) = 4 > 0. Do đó hàm số có hai cực trị là x = 0 và x = 4/3

Các mệnh đề (1); (2) và (3) sai;mệnh đề (4) đúng.

Câu 11: Cho hàm số y = f(x) có đồ thị như hình vẽ. Điểm cực đại của đồ thị hàm số là

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

A. M(0; 2)    B. N(-2; -14)

C. P(2; -14)     D. N(-2; -14) và P(2; -14)

Dựa vào định nghĩa cực trị.

Chọn đáp án A.

Câu 12: Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Mệnh đề nào sau đây là đúng?

A. Hàm số có đúng hai cực trị

B. Hàm số có điểm cực tiểu là -2

C. Hàm số có giá trị cực đại bằng 0.

D. Hàm số đạt cực đại tại x = 0 đạt cực tiểu tại x = -1 và x = 1

Dựa vào định nghĩa cực trị và bảng biến thiên.

Chọn đáp án D.

Câu 13: Tìm a, b, c sao cho hàm số y = x3 + ax2 + bx + c có giá trị bằng 0 khi x = 1 và đạt cực trị khi bằng 0 khi x = -1 .

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Sử dụng giả thiết và điều kiện cần của cực trị ta có

y(1) = 0; y'(-1) = 0; y(-1) = 0

Trong đó , y' = 3x2 + 2ax + b

Từ đó suy ra:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Với a = 1; b = -1; c = -1 thì hàm số đã cho trở thành y = x3 + x2 - x - 1

Ta có y' = 3x2 + 2x - 1, y'' = 6x + 2. Vì y''=(-1) = -4 < 0 nên hàm số đạt cực đại tại x = -1 . Vậy a = 1; b = -1; c = -1 là các giá trị cần tìm.

Chọn đáp án C.

Câu 14: Trong các mệnh đề sau, mệnh đề nào đúng?

Nếu f'(x0) = 0 thì x0 là điểm cực trị của hàm số.

B. Nếu f'(x0) = 0 thì x0 là điểm cực đại của hàm số.

C. Nếu f'(x0) = 0 và f''(x0) > 0 thì x0 là điểm cực đại của hàm số.

D. Nếu f(x) có đạo hàm tại x0 và f’(x) đổi dấu khi x đi qua x0 thì x0 là điểm cực trị của hàm số.

Xem lại điều kiện cần và đủ để có cực trị của hàm số.

Chọn đáp án D.

Câu 15: Giá trị của m để hàm số y = x3 - 3mx2 + (m2 - 1)x + 2 đạt cực đại tại x = 2 là:

A. m = 1     B. m = 11     C. m = -1     D. Không tồn tại

y' = 3x2 - 6mx + m2 - 1; y'' = 6x - 6m

Hàm số đạt cực đại tại x = 2 khi

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Câu 16: Với giá trị nào của m, hàm số y = (x - m)3 - 3x đạt cực tiểu tại điểm có hoành độ x = 0?

A. m = 1    B. m = -1     C. m = 0     D. Không tồn tại

Xét y = x3 - 3mx2 + (3m2 - 3)x - m2

Ta có: y' = 32 - 6mx + 3m2 - 3, y'' = 6x - 6m

Hàm số đạt cực tiểu tại điểm có hoành độ x = 0 khi

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Câu 17: Với giá trị nào của m, hàm số y = x3 + 2(m - 1)x2 + (m2 - 4m + 1)x + 2(m2 + 1) có hai điểm cực trị x1,x2 thỏa mãn

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

A. m = 1/2    B. m = 2     C. m = 1/2 hoặc m = 2     D. Không tồn tại

Ta có y' = 3x2 + 4(m - 1)x + m2 - 4m + 1. Hàm số có hai cực trị

=> y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> 4(m - 1)2 - 3(m2 - 4m + 1) > 0

<=> m2 + 4m + 1 > 0

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Áp dụng Vi-ét cho phương trình y’ = 0 có hai nghiệm phân biệt x1, x2 ta có :

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Đối chiếu điều kiện (*) có m = 5 hoặc m = 1

Câu 18: Với giá trị nào của m, đồ thị hàm số y = x3 - mx2 + 3(m2 - 1)x - m 3 + m có điểm cực đại B, điểm cực tiểu C thỏa mãn OC = 3OB, với O là gốc tọa độ?

Ta có y' = 3x2 - 6mx + 3(m2 - 1).

Hàm số có hai cực trị => y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=> (3m)2 - 3.3(m2 - 1) > 0 <=> 9 > 0 đúng với mọi m. Ta có điểm cực đại là B(m - 1; -2m + 2) và cực tiểu là C(m + 1; -2m - 2)

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Câu 19: Với giá trị nào của m, đồ thị hàm số y = x3 - 3mx2 + m có hai điểm cực trị B, C thẳng hàng với điểm A(-1;3)?

A. m = 0     B. m = 1     C. m = -3/2     D. m = -3/2 hoặc m = 1

y’= 3x2 - 6mx = 3x(x - 2m)

Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> m ≠ 0 (*)

Tọa độ hai điểm cực trị là B(0;m) và C(2m;-4m3 + m)

AB =(1;m – 3); AC =(2m+1; -4m3 + m-3)

A, B, C thẳng hàng

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Câu 20: Cho hàm số y = x3 - 3x2 - 6x + 8 (C). Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số (C) là:

A. y = 6x - 6     B. y = -6x - 6     C. y = 6x + 6     D. y = -6x + 6

Cách 1: Ta có y’=3x2-6x-6 ; y”=6x - 6

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Do đó đồ thị hàm số có điểm cực trị là A(1 + √3; -6√3) và B(1 - √3; 6√3) .

Phương trình đường thẳng đi qua hai điểm cực trị là:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Cách 2: Ta có:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Gọi x1, x2 là nghiệm của phương trình y’(x)= 3x2-6x-6=0 . Khi đó ta có A(x1, y(x1)), BA(x2, y(x2)) là hai cực trị của đồ thị hàm số C với y'(x1) = y'(x2) = 0 .

Do đó ta có:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Vậy A, B thuộc đường thẳng y= - 6x+6.

Câu 21: Cho hàm số y = x3 -3x2 - 9x + 4. Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số trên là:

A. y = -8x + 1     B. y = x + 7     C. y = -x + 1     D. Không tồn tại

y' = 3x2 - 6x - 9, y'' = 6x - 6

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Do đồ thị hàm số có hai điểm cực trị là A(-1;9) và B(3;-23).

Phương trình đường thẳng đi qua hai điểm cực trị là:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Câu 22: Với giá trị nào của m, đường thẳng đi qua hai điểm cực trị của đồ thị hàm số y = x3 - 3x2 + 3mx + 1 - m tạo với đường thẳng Δ: 3x + y - 8 = 0 một góc 45o ?

A. m = 0    B. m = 2    C.m = 3/4    D. m = 2 hoặc m = 3/4

Ta có y' = 3x2 - 6x + 3m. Hàm số có hai điểm cực trị <=> y’=0 có hai nghiệm phân biệt

<=> Δ' = 32 -3.3m > 0 <=> m < 1 (*)

Chia y cho y’ ta được:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Giả sử x1, x2 là hai nghiệm phân biệt của y’=0

Phương trình đường thẳng đi qua hai điểm cực trị có dạng (d) : y= (2m-2)x+1

(d) có vectơ pháp tuyến là n1 = (2m - 2; -1)

(Δ) : 3x+y-8=0 có vectơ pháp tuyến là n2(3; 1)

Vì góc giữa đường thẳng (d) và (Δ) là 45o nên

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Đối chiếu điều kiện (*) có m = 3/4

Câu 23: Với giá trị nào của m, đồ thị hàm số y = x3 + 3x2 + m2x + m có hai điểm cực trị đối xứng qua đường thẳng:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

A. m = 0    B. m = 1     C. m = -1    D. Không tồn tại

y' = 3x2 + 6x + m2 . Hàm số có hai điểm cực trị => y’=0 có hai nghiệm phân biệt <=> Δ' = 32 - 3.m2 > 0 <=> -√3 < m < √3

Chia y cho y’ ta được:

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Giả sử x1, x2 là hai nghiệm phân biệt của y’=0.

Phương trình đường thẳng đi qua hai điểm cực trị có dạng

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

(d) có vectơ pháp tuyến là

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2) Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Vì hai điểm cực trị đối xứng với nhau qua (Δ) nên (d) ⊥ (Δ)

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Thử lại khi m=0 ta có: y = x3 + 3x2; y' = 3x2 + 6x; y'' = 6x + 6

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

y''(0) = 6 > 0; y''(-2) = -6 < 0

Tọa độ hai điểm cực trị của đồ thị hàm số là O(0;0), A(-2;4)

Trung điểm của OA là I(-1;2).

Ta thấy I(-1,2) không thuộc đường thẳng (Δ) . Vậy không tồn tại m.

Câu 24: Với giá trị nào của m, đồ thị hàm số y = x4 - 2mx2 + m 4 + 2m có ba điểm cực trị tạo thành tam giác đều?

A. m = 0     B. m = ∛3    C.-∛3     D. Không tồn tại

y' = 4x3 - 4mx = 4x(x2 - m)

Hàm số có ba điểm cực trị => y’=0 có ba nghiệm phân biệt <=> m > 0.

Khi đó đồ thị hàm số có ba điểm cực trị là :

A(0; m4 + 2m), B(-√m; m4 - m2 + 2m), C(√m; m4 - m2 + 2m)

ΔABC đều khi AB=AC

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Đối chiếu với điều kiện tồn tại cực trị ta có m = ∛3 là giá trị cần tìm.

Câu 25: Cho hàm số y = x4 - 2x2 - 2 (2). Khẳng định nào sau đây là đúng?

A. Hàm số (2) đạt cực đại tại y = -2

B. Hàm số (2) đạt giá trị cực đại tại y = -2

C. Đồ thị hàm số (2) có điểm cực đại là y = -2

D. Hàm số (2) có giá trị cực đại là y = -2

Ta có: y' = 4x3 - 4x, y'' = 12x2 - 4

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

y''(-1) = 8 > 0; y''(1) = 8 > 0

Do đó hàm số đạt cực đại tại x = 0 và có giá trị cực đại là y(0)=-2

Câu 26: Hàm số y = cosx đạt cực trị tại những điểm

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

y' = -sinx; y'' = -cosx. y' = 0 <=> -sinx = 0 <=> x = kπ

y''(kπ) = ±1. Do đó hàm số đạt cực trị tại x = kπ

Câu 27: Với giá trị nào của m, hàm số y = x3 - 2x2 + mx - 1 không có cực trị?

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

y' = 3x2 - 4x + m. Hàm số không có cực trị <=> y’=0 vô nghiệm hoặc có nghiệm kép <=> Δ' ≤ 0 <=> 22 - 3m ≤ 0 <=> m ≥ 4/3

Do đó hàm số không có cực trị khi m ≥ 4/3

Câu 28: Với giá trị nào của m, hàm số y = -mx4 + 2(m - 1)x2 + 1 - 2m có một cực trị

A.0 ≤ m ≤ 1     B. m > 1 hoặc m < 0     C. 0 < m < 1     D. 0 < m ≤ 1

Xét hàm số y = -mx4 +2(m - 1)x2 + 1 - 2m(1)

TH1: m = 0 (1) trở thành y = -2x2 + 1

Vậy với m = 0 hàm số luôn có một cực trị.

TH2: m ≠ 0. y' = -4mx3 + 4(m - 1)x

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Để hàm số (1) có một cực trị thì

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

vô nghiệm hoặc có nghiệm kép bằng 0

Trắc nghiệm Cực trị của hàm số có đáp án năm 2023 (phần 2)

Kết hợp cả hai trường hợp ta có 0 ≤ m ≤ 1

Xem thêm bộ bài tập trắc nghiệm Giải tích lớp 12 chọn lọc, có đáp án hay khác: