15 dạng bài Giới hạn, Hàm số liên tục chọn lọc, có lời giải - Toán lớp 11


15 dạng bài Giới hạn, Hàm số liên tục chọn lọc, có lời giải

Với 15 dạng bài Giới hạn, Hàm số liên tục chọn lọc, có lời giải Toán lớp 11 tổng hợp các dạng bài tập, 200 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Giới hạn, Hàm số liên tục từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

15 dạng bài Giới hạn, Hàm số liên tục chọn lọc, có lời giải

Tổng hợp lý thuyết chương Giới hạn

Chủ đề: Giới hạn của dãy số

Chủ đề: Giới hạn của hàm số

Chủ đề: Hàm số liên tục

Cách tìm giới hạn của hàm số bằng định nghĩa

A. Phương pháp giải & Ví dụ

Ta sử dụng phương pháp chung để làm các bài toán dạng này.

Ví dụ minh họa

Bài 1: Tìm các giới hạn sau:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Xét xem các hàm số sau có giới hạn tại các điểm chỉ ra hay không? Nếu có hay tìm giới hạn đó?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 3: Tìm m để các hàm số:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 4: Tìm các giới hạn sau:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Cách tìm giới hạn hàm số dạng 0/0, dạng vô cùng trên vô cùng

A. Phương pháp giải & Ví dụ

Tìm Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án trong đó f(x0) = g(x0) = 0

Dạng này ta gọi là dạng vô định 0/0

Để khử dạng vô định này ta sử dụng định lí Bơzu cho đa thức:

Định lí: Nếu đa thức f(x) có nghiệm x = x0 thì ta có :f(x) = (x-x0)f1(x)

* Nếu f(x) và g(x) là các đa thức thì ta phân tích

f(x) = (x-x0)f1(x)và : g(x) = (x-x0)g1(x).

Khi đó Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án, nếu giới hạn này có dạng 0/0 thì ta tiếp tục quá trình như trên.

Ví dụ minh họa

Bài 1: Tìm các giới hạn sau: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Tìm giới hạn sau: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 3: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Đặt t = x - 1 ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Cách xét tính liên tục của hàm số

A. Phương pháp giải & Ví dụ

Vấn đề 1: Xét tính liên tục của hàm số tại một điểm

- Cho hàm số y = f(x) có tập xác định D và điểm x0 ∈ D. Để xét tính liên tục của hàm số trên tại điểm x = x0 ta làm như sau:

       + Tìm giới hạn của hàm số y = f(x) khi x → x0 và tính f(x0)

       + Nếu tồn tại Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án thì ta so sánh

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án với f(x0).

Nếu Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án =     f(x0) thì hàm số liên tục tại x0

Chú ý:

1. Nếu hàm số liên tục tại x0 thì trước hết hàm số phải xác định tại điểm đó.

2. Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

3. Hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án liên tục tại x = x0Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án = k

4. Hàm số Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án liên tục tại điểm x = x0 khi và chỉ khi Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vấn đề 2: Xét tính liên tục của hàm số trên một tập

Ta sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ …

Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó.

Ví dụ minh họa

Bài 1: Xét tính liên tục của hàm số sau tại x = 3

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. Hàm số xác định trên R

Ta có f(3) = 10/3 và

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hàm số không liên tục tại x = 3

2. Ta có f(3) = 4 và

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hàm số gián đoạn tại x = 3

Bài 2: Xét tính liên tục của các hàm số sau trên toàn trục số

1. f(x) = tan2x + cosx

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

1. TXĐ: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hàm số liên tục trên D

2. Điều kiện xác định:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hàm số liên tục trên (1;2) ∪ (2,+∞)

Bài 3: Xét tính liên tục của hàm số sau tại điểm chỉ ra

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Ta có

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hàm số liên tục tại x = 1

Bài 4: Xét tính liên tục của hàm số sau tại điểm chỉ ra

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy hàm số không liên tục tại điểm x = -1

Bài 5: Chọn giá trị f(0) để các hàm số sau liên tục tại điểm x = 0

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xem thêm các dạng bài tập Toán lớp 11 chọn lọc, có đáp án hay khác: