10 dạng bài tập Phép dời hình và phép đồng dạng trong mặt phẳng chọn lọc - Toán lớp 11


10 dạng bài tập Phép dời hình và phép đồng dạng trong mặt phẳng chọn lọc

Với 10 dạng bài tập Phép dời hình và phép đồng dạng trong mặt phẳng chọn lọc Toán lớp 11 tổng hợp các dạng bài tập, 100 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Phép dời hình và phép đồng dạng trong mặt phẳng từ đó đạt điểm cao trong bài thi môn Toán lớp 11.

10 dạng bài tập Phép dời hình và phép đồng dạng trong mặt phẳng chọn lọc

Tổng hợp lý thuyết chương Phép dời hình và phép đồng dạng trong mặt phẳng

Các dạng bài tập

Các dạng bài tập chương Phép dời hình và phép đồng dạng trong mặt phẳng

Chủ đề: Phép tịnh tiến

Chủ đề: Phép đối xứng trục

Chủ đề: Phép đối xứng tâm

Chủ đề: Phép quay

Chủ đề: Vị tự

Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến

A. Phương pháp giải

Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay

+) Sử dụng tính chất: d' là ảnh của d qua phép Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực haythì d' song song hoặc trùng với d

Nếu: d: Ax + By + C = 0; d'//d ⇒ d': Ax + By + C' = 0 (C' ≠ C)

+) Sử dụng biểu thức tọa độ

+) Chú ý: Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay

B. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho Tính chất của phép tịnh tiến cực hay = (1;-3) và đường thẳng d có phương trình 2x - 3y + 5 = 0. Viết phương trình đường thẳng d' là ảnh của d qua phép tịnh tiến Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay .

Hướng dẫn giải:

Cách 1. Sử dụng biểu thức tọa độ của phép tịnh tiến.

Lấy điểm M(x;y) tùy ý thuộc d, ta có 2x - 3y + 5 = 0 (*)

Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay

Cách 2. Sử dụng tính chất của phép tịnh tiến

Do d' = Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay(d) nên d' song song hoặc trùng với d, vì vậy phương trình đường thẳng d' có dạng 2x - 3y + c = 0.(**)

Lấy điểm M(-1;1) ∈ d. Khi đó M' = Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay(M) = (-1 + 1;1 - 3) = (0;-2).

Do M' ∈ d' ⇒ 2.0 - 3.(-2) + c = 0 ⇔ c = -6

Vậy ảnh của d là đường thẳng d': 2x - 3y - 6 = 0.

Cách 3. Để viết phương trình d' ta lấy hai điểm phân biệt M,N thuộc d, tìm tọa độ các ảnh M', N' tương ứng của chúng qua Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay. Khi đó d' đi qua hai điểm M' và N'.

Cụ thể: Lấy M(-1;1), N(2;3) thuộc d, khi đó tọa độ các ảnh tương ứng là M'(0;-2), N'(3;0). Do d' đi qua hai điểm M', N' nên có phương trình Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay

Ví dụ 2: Tìm PT đt d qua phép tịnh tiến theo Tính chất của phép tịnh tiến cực hay : d biến thành d’, biết: d’: 2x + 3y – 1 = 0 với Tính chất của phép tịnh tiến cực hay = (-2;-1)

Hướng dẫn giải:

* Cách 1: Gọi Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay (d) = d'. Khi đó d // d’ nên PT đt d có dạng: 2x + 3y + C = 0

Chọn A’(2;-1) ∈ d’. Khi đó: Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay (A) = A' ⇒ A(4; 0) ∈ d nên 8 + 0 + C = 0 ⇔ C = -8

Vậy: d: 2x + 3y – 8 = 0

* Cách 2: Chọn A’(2; -1) ∈ d’, Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay (A) = A' ⇒ A(4; 0) ∈ d và chọn B’(-1;1) ∈ d’, Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay (B) = B' ⇒ B(1;2) ∈ d

Đt d đi qua 2 điểm A, B nên PT đt d là:

Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay

⇔ 2x – 8 = -3y

⇔ 2x + 3y – 8 = 0

* Cách 3: Gọi M’(x’;y’) ∈ d’, Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay(M) = M'Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay

Ta có: M’ ∈ d’

⇔ 2x’ + 3y’ – 1 = 0

⇔ 2x – 4 + 3y – 3 – 1 = 0

⇔ 2x + 3y – 8 = 0

⇔ M ∈ d: 2x + 3y – 8 = 0

Ví dụ 3: Tìm tọa độ vectơ Tính chất của phép tịnh tiến cực hay sao cho Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay (d) = d' với d: 3x – y + 1 = 0 và d’: 3x – y – 7 = 0

Hướng dẫn giải:

d' là ảnh của d qua phép Cách tìm ảnh của 1 điểm qua phép tịnh tiến cực hay thì d' song song hoặc trùng với d

Nhận thấy d//d’ nên với mỗi điểm A ∈ d; B ∈ d' ta có:

Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay

Ví dụ 4: Phép tịnh tiến theo vectơ Tính chất của phép tịnh tiến cực hay = (3;m). Tìm m để đt d: 4x + 6y – 1 = 0 biến thành chính nó qua phép tịnh tiến theo vectơ Tính chất của phép tịnh tiến cực hay

Hướng dẫn giải:

Cách tìm ảnh của 1 đường thẳng qua phép tịnh tiến cực hay

Tìm ảnh của một đường thẳng qua phép đối xứng trục

A. Phương pháp giải

Cách 1. Sử dụng tính chất của phép đối xứng trục

Cách 2. Sử dụng biểu thức tọa độ đối với phép đối xứng qua trục Ox hoặc Oy

Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

B. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng tọa độ Oxy cho đường thẳng d: x + y - 3 = 0. Tìm ảnh của đường thẳng d qua phép đối xứng trục Ox.

Hướng dẫn giải:

Trục Ox có phương trình y = 0.

• Tọa độ giao điểm A của d và Ox là nghiệm của hệ Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• Vì A ∈ Ox nên qua phép đối xứng trục Ox biến thành chính nó, tức A'≡A(3;0).

Chọn điểm Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• Gọi đường thẳng d' là ảnh của d qua phép đối xứng trục Ox khi đó d’ đi qua hai điểm A'(3;0) và B'(1;-2)

Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

Ví dụ 2: Trong mặt phẳng tọa độ Oxy cho đường thẳng Δ có phương trình 7x + y - 3 = 0. Tìm ảnh của Δ qua phép đối xứng trục Oy.

Hướng dẫn giải:

(Sử dụng biểu thức tọa độ)

Biểu thức tọa độ qua phép đối xứng trục tung là Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

Thay vào Δ, ta được 7(-x') + y' - 3 = 0 hay 7x' - y' + 3 = 0.

Vậy ảnh của Δlà: Δ': 7x - y + 3 = 0

Ví dụ 3: Cho đường thẳng (d) có phương trình x + y-7 = 0 và đường thẳng (Δ) có phương trình 2x - y - 2 = 0. Phương trình đường thẳng (d') là ảnh của đường thẳng (d) qua phép đối xứng trục (Δ) là

Hướng dẫn giải:

Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• Gọi M = (d)∩(Δ) khi đó tọa độ của M là nghiệm của hệ: Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

Lấy N(1;6) ∈ (d).

• Gọi (d1) là đường thẳng qua N và vuông góc với (Δ), khi đó: (d1): x + 2y + c = 0

N(1;6) ∈ (d1) ⇒ 1 + 2.6 + c = 0 ⇒ c = -13 ⇒ (d1): x + 2y - 13 = 0

• Gọi I = (d1)∩(Δ) khi đó tọa độ của I là nghiệm của hệ: Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• Gọi N' là ảnh của N qua phép đối xứng trục (Δ) ⇒ I là trung điểm của NN' nên suy ra: Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

• (d') là ảnh của đường thẳng (d) qua phép đối xứng trục (Δ)

Tìm ảnh của một đường thẳng qua phép đối xứng trục cực hay

Tìm ảnh của một đường thẳng qua phép đối xứng tâm

A. Phương pháp giải

[Cách 1]. Sử dụng tính chất:

Phép đối xứng tâm biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

[Cách 2]. Sử dụng biểu thức tọa độ (phương pháp quỹ tích)

Trong hệ tọa độ Oxy

● Nếu tâm đối xứng là O(0;0), với mỗi M(x;y) gọi M' = DO(M) = (x';y') thì Tìm ảnh của một đường thẳng qua phép đối xứng tâm cực hay

● Nếu tâm đối xứng I(a;b) bất kì, với mỗi M(x;y) gọi M' = DI(M) = (x';y') thì Tìm ảnh của một đường thẳng qua phép đối xứng tâm cực hay

B. Ví dụ minh họa

Ví dụ 1: Trong mặt phẳng Oxy cho đường thẳng d có phương trình: x + y + 2 = 0. Tìm ảnh của đường thẳng d qua phép đối xứng tâm I(1;0)

Hướng dẫn giải:

d:x + y + 2 = 0 lấy 2 điểm A(0,-2), B(-2,0) thuộc d.

Gọi A’, B’ là ảnh của A,B qua phép đối xứng tâm I. Khi đó ta có:

Tìm ảnh của một đường thẳng qua phép đối xứng tâm cực hay

Gọi d’ là ảnh của d qua phép đối xứng tâm I. Khi đó d’ đi qua 2 điểm A’B’ nên có phương trình d': x⁡ + y⁡- 4 = 0

Vậy ảnh của d là d': x⁡ + y⁡- 4 = 0

Ví dụ 2: Trong mặt phẳng Oxy cho đường thẳng d có phương trình: 2x + y + 1 = 0. Tìm ảnh của đường thẳng d qua phép đối xứng tâm I(1;0)

Hướng dẫn giải:

• d: 2x + y + 1 = 0 lấy 2 điểm A(0,-1), B (-1,1) thuộc d. Gọi A’, B’ là ảnh của A, B qua phép đối xứng tâm I. Khi đó ta có:

Tìm ảnh của một đường thẳng qua phép đối xứng tâm cực hay

• Gọi d’ là ảnh của d qua phép đối đối xứng tâm I. Khi đó, d’ đi qua 2 điểm A’ và B’ nên có phương trình d’: đi qua A’( 2;1), Tìm ảnh của một đường thẳng qua phép đối xứng tâm cực hay

Phương trình d’: 2(x - 2) + 1(y - 1) = 0 hay 2x + y - 5 = 0

Vậy ảnh của d là d': 2x ⁡ + y - 5 = 0

Ví dụ 3: Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - 6y + 5 = 0, điểm I(2;-4). Viết phương trình đường thẳng d' là ảnh của d qua phép đối xứng tâm I

Hướng dẫn giải:

Lấy M(x;y) thuộc d, phép đối xứng tâm I(x0,y0) biến M(x;y) thành M'(x',y') thì Tìm ảnh của một đường thẳng qua phép đối xứng tâm cực hay. Thay vào phương trình d ta được

2(4 - x') - 6(-8 - y') + 5 = 0 ⇔ 2x' - 6y' - 61 = 0 hay 2x - 6y - 61 = 0.

Dạng bài tập về phép quay 90 độ

A. Phương pháp giải

[1]. Biểu thức tọa độ của phép quay 90° và -90°

Trong hệ trục tọa Oxy:

Dạng bài tập về phép quay 90 độ cực hay

[2]. Bài toán xác định vị trí của điểm, hình khi thực hiện phép quay cho trước

Bước 1. Xác định tâm quay và góc quay theo yêu cầu bài toán.

Bước 2. Áp dụng các kiến thức sau:

Dạng bài tập về phép quay 90 độ cực hay

Bước 3. Kết luận.

B. Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC, trọng tâm G ( thứ tự các điểm như hình vẽ)

Dạng bài tập về phép quay 90 độ cực hay

a) Tìm ảnh của điểm B qua phép quay tâm A góc quay 90°

b) Tìm ảnh của đường thẳng BC qua phép quay tâm A góc quay 90°

c) Tìm ảnh của tam giác ABC qua phép quay tâm G góc quay 90°

Hướng dẫn giải:

Dạng bài tập về phép quay 90 độ cực hay

a)

Dựng đoạn thẳng AB’ bằng đoạn thẳng AB sao cho Dạng bài tập về phép quay 90 độ cực hay (Vị trí B’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

• Khi đó: Dạng bài tập về phép quay 90 độ cực hay

• Vậy B’ à ảnh của điểm B qua phép quay tâm A, góc quay 90°

b)

• Dựng đoạn thẳng AC’ bằng đoạn thẳng AC sao cho Dạng bài tập về phép quay 90 độ cực hay (Vị trí C’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

Dạng bài tập về phép quay 90 độ cực hay

Mặt khác, Q(A,90°)(B) = B' (theo câu a) (2)

• Từ (1) và (2) suy ra: Q(A,90°)(BC) = B'C'

c)

• Dựng đoạn thẳng GA’ bằng đoạn thẳng GA sao cho Dạng bài tập về phép quay 90 độ cực hay (Vị trí A’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

• Dựng đoạn thẳng GB’’ bằng đoạn thẳng GB sao cho Dạng bài tập về phép quay 90 độ cực hay (Vị trí B’’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

• Dựng đoạn thẳng GC’’ bằng đoạn thẳng GC sao cho Dạng bài tập về phép quay 90 độ cực hay (Vị trí C’’ như hình vẽ sao để chiều quay dương và có độ lớn góc quay bằng 90°)

• Khi đó:

Dạng bài tập về phép quay 90 độ cực hay

Từ (1),(2),(3) suy ra: Q(G,90°)(ΔABB) = ΔAB''C''

Ví dụ 2: Cho hình vuông ABCD tâm O ( thứ tự các điểm như hình vẽ)

Dạng bài tập về phép quay 90 độ cực hay

a) Tìm ảnh của điểm C qua phép quay tâm A, góc quay 90°

b) Tìm ảnh của đường thẳng BC qua phép quay tâm O, góc quay 90°

Hướng dẫn giải:

Dạng bài tập về phép quay 90 độ cực hay

a) Gọi E là điểm đối xứng của C qua D.

Khi đó: Dạng bài tập về phép quay 90 độ cực hay

Vậy E là ảnh của C qua phéo quay tâm A, góc quay 90°

b) Vì ABCD là hình vuông nên

Dạng bài tập về phép quay 90 độ cực hay

Từ (1) và (2) suy ra: Q(O,90°)(BC) = CD

Vậy CD là ảnh của BC qua phép quay tâm O góc quay 90°

Ví dụ 3: Trong mặt phẳng tọa độ Oxy cho điểm A(-1;5); đường thẳng d: 3x - y + 2 = 0 và đường tròn (C): (x + 4)2 + (y - 1)2 = 16

a) Tìm tọa độ điểm B là ảnh của điểm A qua phép quay tâm O(0;0) góc quay -90°.

b) Viết phương trình đường thẳng d' là ảnh của d qua phép quay tâm O góc quay -90°.

c) Tìm ảnh của đường tròn (C) qua phép quay tâm O, góc quay -90°

Hướng dẫn giải:

Dạng bài tập về phép quay 90 độ cực hay

a)

Cách 1:

+) Do Q(O,90°)(A) = B nên dựa vào vẽ bên ta suy ra: B(5;1).

Cách 2:

+) Do Q(O,90°)(A) = B nên Dạng bài tập về phép quay 90 độ cực hay.

Vậy B(5;1).

b) Qua phép quay tâm O góc quay -90° đường thẳng d biến thành đường thẳng d' vuông góc với d.

Phương trình đường thẳng d' có dạng: x + 3y + m = 0.

Lấy A(0;2) ∈ d. Qua phép quay tâm O góc quay -90°, điểm A(0;2) biến thành điểm B(2;0) ∈ d'. Khi đó m = -2.

Vậy phương trình đường d' là x + 3y - 2 = 0.

c) Từ (C), ta có tâm I(-4; 1) và bán kính R = 4.

Khi đó: Q(O,90°)(I) = I'(1;4) và bán kính R' = R = 4.

Vậy: Q(O,90°)(C) = (C'): (x - 1)2 + (y - 4)2 = 16

C. Bài tập trắc nghiệm

Câu 1. Cho hình vuông ABCD tâm O, M là trung điểm của AB, N là trung điểm của OA ( thứ tự các điểm A,B,C,D như hình vẽ)

Dạng bài tập về phép quay 90 độ cực hay

Tìm ảnh của ΔAMN qua phép quay tâm O, góc quay 90°.

A. ΔDM’N’, M’, N’ lần lượt là là trung điểm OC, OB

B. ΔDM’N’, M’, N’ lần lượt là là trung điểm OA, OB

C. ΔAM’N’, M’, N’ lần lượt là là trung điểm OC, OD

D. ΔAM’N’ với M’, N’ lần lượt là là trung điểm BC, OB

Lời giải:

.

Dạng bài tập về phép quay 90 độ cực hay

Dạng bài tập về phép quay 90 độ cực hay

Chọn D.

Câu 2. Cho hai hình vuông vuông ABCD và BEFG (như hình vẽ). Tìm ảnh của ΔABG trong phép quay tâm B, góc quay -90°.

Dạng bài tập về phép quay 90 độ cực hay

A. ΔCBE

B. ΔCBF

C. ΔCBG

D. ΔCBD

Lời giải:

Dạng bài tập về phép quay 90 độ cực hay

Chọn A.

Dạng bài tập về phép quay 90 độ cực hay

Câu 3. Cho hình vuông ABCD có tâm là O,. Gọi M,N,P,Q theo thứ tự là trung điểm các cạnh AD, DC, CB, BA ( xem hình vẽ)

Dạng bài tập về phép quay 90 độ cực hay

Tìm ảnh của tam giác ODN qua phép quay tâm O góc quay -90°.

A. ΔOCP

B. ΔOCM

C. ΔMCP

D. ΔNCP

Lời giải:

Dạng bài tập về phép quay 90 độ cực hay

Chọn A

+) Ta có:

Dạng bài tập về phép quay 90 độ cực hay

+) Từ (1), (2), (3) suy ra: Q(O,-90°)(ΔODN) = ΔOCP.

Câu 4. Trong mặt phẳng Oxy, ảnh của điểm M(-6;1) qua phép quay Q(O,90°)là:

A. M(1;6).

B. M(-1;-6).

C. M(-6;-1).

D. M(6;1).

Lời giải:

Chọn B

Cho điểm M(x;y). Khi đó Q(O,90°)(M) = M'(-y;x).

Do đó, với điểm M(-6;1) thì Q(O,90°)(M) = M'(-1;-6).

Câu 5. Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm M(2;0) và điểm N(0;2). Phép quay tâm O biến điểm M thành điển N, khi đó góc quay của nó là

A. φ = 30°.

B. φ = 45°.

C. φ = 90°.

D. φ = 270°.

Lời giải:

Chọn C

+ Q(O;φ)⁡: M(x;y) ↦ N(x';y'). Khi đó: Dạng bài tập về phép quay 90 độ cực hay

Thử đáp án ta nhận φ = 90°.

+ Hoặc biểu diễn trên hệ trục tọa độ ta cũng được đáp án tương tự

Câu 6. Trong mặt phẳng Oxy, cho điểm B(-3;6). Tìm toạ độ điểm E sao cho B là ảnh của E qua phép quay tâm O góc quay(-90°).

A. E(6;3).

B. E(-3;-6).

C. E(-6;-3).

D. E(3;6).

Lời giải:

Chọn C.

Điểm E(-6;-3).

Câu 7. Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x + 2y - 6 = 0. Viết phương trình đường thẳng Δ' là ảnh của đường thẳng Δ qua phép quay tâm O góc 90°?

A. 2x - y + 6 = 0.

B. 2x - y-6 = 0.

C. 2x + y + 6 = 0.

D. 2x + y-6 = 0.

Lời giải:

Chọn A

Ta có Δ' ⊥ Δ ⇒ Δ': 2x - y+c = 0.

Lấy M(0;3) ∈ Δ, phép quay Q(O,90°) biến điểm M(0;3) thành điểm M'(-3;0).

Thế tọa độ điểm M'(-3;0) vào phương trình đường Δ': 2x - y + c = 0 ta được c = 6.

Vậy phương trình đường Δ': 2x - y + 6 = 0.

Câu 8. Trong mặt phẳng Oxy, cho đường tròn (C): (x - 2)2 + y2 = 8. Viết phương trình đường tròn (C1) sao cho (C) là ảnh của đường tròn (C1) qua phép quay tâm O, góc quay 90°.

A. x2 + (y + 2)2 = 8.

B. x2 + (y + 2)2 = 4.

A. (x - 2)2 + y2 = 8.

C. x2 + (y - 2)2 = 8.

Lời giải:

Chọn A

Dạng bài tập về phép quay 90 độ cực hay

Xem thêm các dạng bài tập Toán lớp 11 chọn lọc, có đáp án hay khác: