Các dạng bài tập Hàm số lượng giác, Phương trình lượng giác chọn lọc - Toán lớp 11
Các dạng bài tập Hàm số lượng giác, Phương trình lượng giác chọn lọc
Với Các dạng bài tập Hàm số lượng giác, Phương trình lượng giác chọn lọc Toán lớp 11 tổng hợp các dạng bài tập, trên 300 bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Hàm số lượng giác, Phương trình lượng giác từ đó đạt điểm cao trong bài thi môn Toán lớp 11.
Tổng hợp lý thuyết chương Hàm số lượng giác - phương trình lượng giác
- Lý thuyết Hàm số lượng giác Xem chi tiết
- Lý thuyết Phương trình lượng giác cơ bản Xem chi tiết
- Lý thuyết Một số phương trình lượng giác thường gặp Xem chi tiết
- Lý thuyết Tổng hợp chương Hàm số lượng giác - phương trình lượng giác Xem chi tiết
Chuyên đề: Hàm số lượng giác
- Dạng 1: Tập xác định, tập giá trị của hàm số lượng giác Xem chi tiết
- Trắc nghiệm tập xác định, tập giá trị của hàm số lượng giác Xem chi tiết
- Dạng 2: Tính chẵn, lẻ và chu kì của hàm số lượng giác Xem chi tiết
- Trắc nghiệm tính chẵn, lẻ và chu kì của hàm số lượng giác Xem chi tiết
- Tìm tập xác định của hàm số lượng giác Xem chi tiết
- Tính đơn điệu của hàm số lượng giác Xem chi tiết
- Xác định tính chẵn, lẻ của hàm số lượng giác Xem chi tiết
- Tính chu kì tuần hoàn của hàm số lượng giác Xem chi tiết
- Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác Xem chi tiết
- 60 bài tập trắc nghiệm hàm số lượng giác có đáp án Xem chi tiết
Chuyên đề: Phương trình lượng giác
- Dạng 1: Cách giải phương trình lượng giác cơ bản Xem chi tiết
- Trắc nghiệm giải phương trình lượng giác cơ bản Xem chi tiết
- Dạng 2: Phương trình bậc hai với một hàm số lượng giác Xem chi tiết
- Trắc nghiệm phương trình bậc hai với một hàm số lượng giác Xem chi tiết
- Dạng 3: Phương trình bậc nhất theo sinx và cosx Xem chi tiết
- Trắc nghiệm phương trình bậc nhất theo sinx và cosx Xem chi tiết
- Dạng 4: Phương trình đẳng cấp bậc 2, bậc 3 lượng giác Xem chi tiết
- Trắc nghiệm phương trình đẳng cấp bậc 2, bậc 3 lượng giác Xem chi tiết
- Dạng 5: Phương trình lượng giác đối xứng, phản đối xứng Xem chi tiết
- Trắc nghiệm phương trình lượng giác đối xứng, phản đối xứng Xem chi tiết
- Dạng 6: Cách giải các phương trình lượng giác đặc biệt Xem chi tiết
- Trắc nghiệm giải các phương trình lượng giác đặc biệt Xem chi tiết
- Dạng 7: Tìm nghiệm của phương trình lượng giác thỏa mãn điều kiện Xem chi tiết
- Trắc nghiệm tìm nghiệm của phương trình lượng giác thỏa mãn điều kiện Xem chi tiết
- Dạng 8: Phương pháp loại nghiệm, hợp nghiệm trong phương trình lượng giác Xem chi tiết
- Trắc nghiệm phương pháp loại nghiệm, hợp nghiệm trong phương trình lượng giác Xem chi tiết
- Giải phương trình lượng giác cơ bản Xem chi tiết
- Tìm nghiệm của phương trình lượng giác cơ bản trên khoảng (đoạn) Xem chi tiết
- Phương trình quy về phương trình lượng giác cơ bản Xem chi tiết
- Phương trình bậc nhất đối với hàm số lượng giác Xem chi tiết
- Phương trình quy về phương trình bậc nhất đối với hàm số lượng giác Xem chi tiết
- Phương trình bậc hai đối với hàm số lượng giác Xem chi tiết
- Phương trình quy về phương trình bậc hai đối với hàm số lượng giác Xem chi tiết
- Tìm nghiệm của phương trình lượng giác trong khoảng, đoạn Xem chi tiết
- Tìm điều kiện của tham số m để phương trình lượng giác có nghiệm Xem chi tiết
- Điều kiện để phương trình bậc nhất đối với sinx và cosx có nghiệm Xem chi tiết
- Giải phương trình bậc nhất đối với sinx và cosx Xem chi tiết
- Phương trình quy về phương trình bậc nhất đối với sinx và cosx Xem chi tiết
- Phương trình thuần nhất bậc 2 đối với sinx và cosx Xem chi tiết
- Phương trình đối xứng, phản đối xứng đối với sinx và cosx Xem chi tiết
- Phương trình lượng giác đưa về dạng tích Xem chi tiết
- Phương trình lượng giác không mẫu mực Xem chi tiết
- Tìm số nghiệm của phương trình lượng giác trong khoảng, đoạn Xem chi tiết
Bài tập tổng hợp chương
Cách tìm Tập xác định, tập giá trị của hàm số lượng giác
A. Phương pháp giải & Ví dụ
Ví dụ minh họa
Đáp án và hướng dẫn giải
1.
Vậy tập xác định của hàm số trên là
2.
Vậy tập xác định của hàm số trên là
3.
Vậy tập xác định của hàm số trên là
Cách tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác
A. Phương pháp giải
Để tìm được giá trị lớn nhất;giá trị nhỏ nhất của hàm số ta cần chú ý:
+ Với mọi x ta luôn có: - 1 ≤ cosx ≤ 1; -1 ≤ sinx ≤ 1
+Với mọi x ta có: 0 ≤ |cosx| ≤ 1 ;0 ≤ |sinx| ≤ 1
+ Bất đẳng thức bunhia –copski: Cho hai bộ số (a1; a2) và (b1;b2) khi đó ta có:
(a1.b1+ a2.b2 )2 ≤ ( a12+ a22 ).( b12+ b22 )
Dấu “=” xảy ra khi: a1/a2 = b1/b2
+ Giả sử hàm số y= f(x) có giá trị lớn nhất là M và giá trị nhỏ nhất là m. Khi đó; tập giá trị của hàm số là [m; M].
+ Phương trình: a. sinx+ b. cosx= c có nghiệm khi và chỉ khi a2 + b2 ≥ c2
B. Ví dụ minh họa
Ví dụ 1. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= 1- 2|cos3x|.
A. M=3 ; m= - 1.
B. M= 1 ; m= -1.
C. M=2 ;m= -2.
D. M=0 ; m= -2.
Lời giải:.
Chọn B.
Với mọi x ta có: - 1 ≤ cos3x ≤ 1 nên 0 ≤ |cos3x| ≤ 1
⇒ 0 ≥ -2|cos3x| ≥ -2
Ví dụ 2: Hàm số y= 1+ 2cos2x đạt giá trị nhỏ nhất tại x= x0. Mệnh đề nào sau đây là đúng?
A.x0=π+k2π, kϵZ .
B.x0=π/2+kπ, kϵZ .
C.x0=k2π, kϵZ .
D.x0=kπ ,kϵZ .
Lời giải:.
Chọn B.
Ta có - 1 ≤ cosx ≤ 1 ⇒ - 0 ≤ cos2x ≤ 1 ⇒ 1 ≤ 1+2cos2x ≤ 3
Do đó giá trị nhỏ nhất của hàm số bằng 1 .
Dấu ‘=’ xảy ra khi cosx=0 ⇒ x=π/2+kπ, kϵZ .
Ví dụ 3: Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= sin2x+ 2cos2x.
A.M= 3 ;m= 0
B. M=2 ; m=0.
C. M=2 ; m= 1.
D.M= 3 ; m= 1.
Lời giải:.
Chọn C.
Ta có: y = sin2 x+ 2cos2x = (sin2x+ cos2x) + cos2x = 1+ cos2 x.
Do: -1 ≤ cosx ≤ 1 nên 0 ≤ cos2 x ≤ 1 ⇒ 1 ≤ cos2 x+1 ≤ 2
Suy ra giá trị lớn nhất của hàm số là M= 2 và giá trị nhỏ nhất của hàm số là m= 1
Cách giải phương trình lượng giác cơ bản
A. Phương pháp giải & Ví dụ
- Phương trình sinx = a (1)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.
Các trường hợp đặc biệt:
- Phương trình cosx = a (2)
♦ |a| > 1: phương trình (2) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn cosα = a.
Khi đó phương trình (2) có các nghiệm là
x = α + k2π, k ∈ Z
và x = -α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và cosα = a thì ta viết α = arccos a.
Khi đó các nghiệm của phương trình (2) là
x = arccosa + k2π, k ∈ Z
và x = -arccosa + k2π, k ∈ Z.
Các trường hợp đặc biệt:
- Phương trình tanx = a (3)
Điều kiện:
Nếu α thỏa mãn điều kiện và tanα = a thì ta viết α = arctan a.
Khi đó các nghiệm của phương trình (3) là
x = arctana + kπ,k ∈ Z
- Phương trình cotx = a (4)
Điều kiện: x ≠ kπ, k ∈ Z.
Nếu α thỏa mãn điều kiện và cotα = a thì ta viết α = arccot a.
Khi đó các nghiệm của phương trình (4) là
x = arccota + kπ, k ∈ Z
Ví dụ minh họa
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sin(π/6) c) tanx – 1 = 0
b) 2cosx = 1. d) cotx = tan2x.
Bài 2: Giải các phương trình lượng giác sau:
a) cos2 x - sin2x =0.
b) 2sin(2x – 40º) = √3
Bài 3: Giải các phương trình lượng giác sau:
Đáp án và hướng dẫn giải
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sinπ/6
b)
c) tanx=1⇔cosx= π/4+kπ (k ∈ Z)
d) cotx=tan2x
Bài 2: Giải các phương trình lượng giác sau:
a) cos2x-sin2x=0 ⇔cos2x-2 sinx cosx=0
⇔ cosx (cosx - 2 sinx )=0
b) 2 sin(2x-40º )=√3
⇔ sin(2x-40º )=√3/2
Bài 3: Giải các phương trình lượng giác sau:
a) sin(2x+1)=cos(3x+2)
b)
⇔ sinx+1=1+4k
⇔ sinx=4k (k ∈ Z)
Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm
Nếu |4k| ≤ 1 mà k nguyên ⇒ k = 0 .Khi đó:
⇔sinx = 0 ⇔ x = mπ (m ∈ Z)