100 Bài tập trắc nghiệm Toán 10 Chương 4 (có đáp án): Vectơ - Kết nối tri thức
Haylamdo biên soạn và sưu tầm 200 bài tập trắc nghiệm Toán 10 Chương 4: Vectơ có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
100 Bài tập trắc nghiệm Toán 10 Chương 4 (có đáp án): Vectơ - Kết nối tri thức
Câu 1:
Cho hình vẽ sau:
Cặp vectơ nào cùng hướng?
A. \(\overrightarrow a \) và \(\overrightarrow b \);
B. \(\overrightarrow a \) và \(\overrightarrow c \);
C. \(\overrightarrow c \) và \(\overrightarrow b \);
D. \(\overrightarrow c \) và \(\overrightarrow e \).
Câu 2:
Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
A. 10 cm;
B. 3 cm;
C. 4 cm;
D. 5cm.
Câu 3:
Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
A. \(\overrightarrow {DC} \);
B. \(\overrightarrow {AD} \);
C. \(\overrightarrow {CB} \);
D. \(\overrightarrow {BA} \).
Câu 4:
Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.
Phát biểu nào dưới đây là sai.
A. \(\overrightarrow {MN} = \overrightarrow {PC} \);
B. \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \);
C. \(\overrightarrow {MB} = \overrightarrow {AM} \);
D. \(\overrightarrow {MN} = \overrightarrow {PB} \).
Câu 5:
Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.
A. \(\left| {\overrightarrow {AM} } \right| = \sqrt {53} \)cm
B. \(\left| {\overrightarrow {AM} } \right| = 3\) cm
C. \(\left| {\overrightarrow {AM} } \right| = \frac{{\sqrt {53} }}{2}\) cm
D. \(\left| {\overrightarrow {AM} } \right| = \frac{3}{2}\) cm
Câu 6:
A. \(\overrightarrow {PQ} \);
B. \(\overrightarrow {QP} \);
C. PQ;
D. \(\overline {PQ} \).
Câu 7:
Hai vectơ được gọi là bằng nhau khi và chỉ khi:
A. hai vectơ độ dài bằng nhau;
B. hai vectơ trùng nhau;
C. hai vectơ cùng phương và độ dài bằng nhau;
D. hai vectơ cùng hướng và độ dài bằng nhau.
Câu 8:
Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?
A. \(\overrightarrow {AB} = \overrightarrow {DC} \);
B. \(\overrightarrow {OB} = \overrightarrow {DO} \);
C. \(\overrightarrow {OA} = \overrightarrow {OC} \);
D. \(\overrightarrow {CB} = \overrightarrow {DA} \).
Câu 9:
Cho hình vuông MNPQ có chu vi bằng 12. Độ dài vectơ \(\overrightarrow {MP} \) là:
A. 3;
B. \(3\sqrt 2 \);
C. 6;
D. \(6\sqrt 2 \).
Câu 10:
Cho tam giác ABC có bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?
A. 3;
B. 4;
C. 5;
D. 6.
Câu 11:
Điền từ thích hợp vào dấu (…) để được mệnh đề đúng. “Hai vectơ ngược hướng thì …”:
A. có giá song song;
B. cùng phương;
C. có độ dài bằng nhau;
D. có giá trùng nhau.
Câu 12:
Mệnh đề nào sau đây là đúng?
A. Có duy nhất một vectơ cùng phương với mọi vec tơ;
B. Có vô số vectơ cùng phương với mọi vectơ;
C. Không có vectơ nào cùng phương với mọi vectơ;
D. Có ít nhất hai vectơ cùng phương với mọi vectơ.
Câu 13:
Cho hình vẽ:
Có bao nhiêu cặp vectơ không cùng phương trên hình vẽ?
A. 3;
B. 2;
C. 1;
D. 0.
Câu 14:
Cho hình thang cân ABCD
Nhận xét nào sau đây đúng về cặp vec tơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \)?
A. \(\overrightarrow {AB} = \overrightarrow {BD} \);
B. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng phương;
C. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng hướng;
D. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng độ dài.
Câu 15:
Trên mặt phẳng tọa độ Oxy, hãy vẽ các vec tơ \(\overrightarrow {OB} \), \(\overrightarrow {AC} ,\overrightarrow {AD} ,\overrightarrow {AE} \) với A(1; -2), B(3; 3), C(4; 1), D(-1; 1), E(-2; 2). Một vật thể khởi hành từ A và chuyển động thẳng đề với vận tốc biểu diễn bởi vec tơ \(\overrightarrow v = \overrightarrow {OB} \). Hỏi vật thể đó đi qua điểm nào trong các điểm sau?
A. B;
B. C;
C. D;
D. E.
Câu 1:
Quy tắc ba điểm được phát biểu:
A. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \);
B. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {CB} = \overrightarrow {AC} \);
C. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {BC} \);
D. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \).
Câu 2:
Cho tam giác ABC có I là trung điểm cạnh AB và G là trọng tâm tam giác ABC. Đẳng thức nào sau đây sai:
A. \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow {AB} \);
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \);
C. \(\overrightarrow {IA} = - \overrightarrow {IB} \);
D. \(\overrightarrow {BA} + \overrightarrow {AC} = \overrightarrow {BC} \).
Câu 3:
Cho tam giác ABC vuông cân tại A, đường cao AH và BC = 10cm. Tính độ dài vectơ \(\overrightarrow {AB} + \overrightarrow {AC} \).
A. 5cm;
B. 10dm;
C. 10cm;
D. 15cm.
Câu 4:
Vectơ đối của vectơ - không là:
A. Mọi vectơ khác vectơ - không;
B. Không có vectơ nào ;
C. Chính nó;
D. Mọi vectơ kể cả vectơ – không.
Câu 5:
Cho hình bình hành ABCD có một điểm O bất kì. Đẳng thức nào sau đây đúng?
A. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OC} - \overrightarrow {OD} \);
B. \(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {OC} - \overrightarrow {OD} \);
C. \(\overrightarrow {OA} - \overrightarrow {OD} = \overrightarrow {OC} - \overrightarrow {OB} \);
D. \(\overrightarrow {OA} - \overrightarrow {OC} = \overrightarrow {OD} - \overrightarrow {OB} \).
Câu 6:
Cho hình thoi ABCD có độ dài cạnh bằng 2 dm và \(\widehat {BAD} = 100^\circ \). Tính độ dài vectơ \(\overrightarrow {DA} + \overrightarrow {DC} \).
A. 9,39 dm;
B. 3,06 dm;
C. 7,31 dm;
D. 2,70 dm.
Câu 7:
Cho hình bình hành ABCD có tâm O, G là trọng tâm tam giác BCD. Đẳng thức nào sau đây sai?
A. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \);
B. \(\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \);
C. \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \);
D. \(\overrightarrow {GC} + \overrightarrow {GO} = \overrightarrow 0 \).
Câu 8:
Tính tổng \(\overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RN} + \overrightarrow {NP} + \overrightarrow {QR} \)
A. \(\overrightarrow {PR} \);
B. \(\overrightarrow {MR} \);
C. \(\overrightarrow {MP} \);
D. \(\overrightarrow {MN} \).
Câu 9:
Cho hình bình hành ABCD. Hãy tìm điểm M để \(\overrightarrow {DM} = \overrightarrow {CB} + \overrightarrow {CD} \).
A. M là một điểm bất kì;
B. M là điểm thỏa mãn ACMD là hình bình hành;
C. M là điểm thỏa mãn ACDM là hình bình hành;
D. Không tồn tại điểm M.
Câu 10:
Cho hình bình hành ABCD tâm O. Ba điểm M, N, P thỏa mãn:
+) \[\overrightarrow {MA} + \overrightarrow {MD} + \overrightarrow {MB} = \overrightarrow 0 \];
+) \[\overrightarrow {N{\rm{D}}} + \overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \];
+) \[\overrightarrow {PM} + \overrightarrow {PN} = \overrightarrow 0 \].
Nhận xét nào sau đây đúng về M, N, P.
A. M là trung điểm của đoạn thẳng NP;
B. N là trung điểm của đoạn thẳng MP;
C. P là trung điểm của đoạn thẳng MN;
D. Cả A, B, C đều sai.
Câu 11:
Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động lên một vật, cho \(\left| {\overrightarrow {{F_1}} } \right| = 7N,\left| {\overrightarrow {{F_2}} } \right| = 3N\). Tính độ lớn của hợp lực \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \)(biết góc giữa \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 45°).
A. 10N;
B. 4N;
C. 5,32N;
Câu 12:
Cho lục giác đều ABCDEF và O là tâm. Có bao nhiêu đẳng thức dưới đây là đẳng thức đúng?
1. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow 0 \);
II. \(\overrightarrow {BC} + \overrightarrow {FE} = \overrightarrow {AD} \);
III. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow {EB} \);
IV. \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {FE} = \overrightarrow 0 \).
A. 1;
B. 2;
C. 3;
D. 4.
Câu 13:
Hai người cùng kéo một con thuyền với hai lực \[\overrightarrow {{F_1}} = \overrightarrow {OA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {OB} \] có độ lớn lần lượt là 550 N, 800 N. Cho biết góc giữa hai vectơ là 52o.
Độ lớn của vectơ hợp lực \[\overrightarrow F \] là tổng của hai lực \[\overrightarrow {{F_1}} \] và \[\overrightarrow {{F_2}} \] nằm trong khoảng nào dưới đây?
A. (900; 1 000);
B. (1 000; 1 100);
C. (1 100; 1 200);
D. (1 200; 1 300).
Câu 14:
Cho hình vuông ABCD có cạnh bằng 1. So sánh độ dài của hai vectơ sau:
\[\overrightarrow a = \left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) + \overrightarrow {CB} \];
\[\overrightarrow b = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BC} + \overrightarrow {DA} \].
A. \(\left| {\overrightarrow a } \right| = 2\left| {\overrightarrow b } \right|\);
B. \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|\);
C. \(\left| {\overrightarrow a } \right| = \sqrt 2 \left| {\overrightarrow b } \right|\);
D. \(\left| {\overrightarrow a } \right| = \frac{1}{{\sqrt 2 }}\left| {\overrightarrow b } \right|\).
Câu 15:
Cho hình vuông ABCD có cạnh bằng a và ba điểm G, H, K thỏa mãn: \[\overrightarrow {K{\rm{A}}} + \overrightarrow {KC} = \overrightarrow 0 \]; \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \]; \[\overrightarrow {HA} + \overrightarrow {H{\rm{D}}} + \overrightarrow {HC} = \overrightarrow 0 \]. Tính độ dài các vectơ \[\overrightarrow {GH} \].
A. \[\frac{{\sqrt 2 a}}{2}\];
B. \[\sqrt 2 \]a;
C. \[\frac{{\sqrt 2 a}}{3}\];
D. a