16 Bài tập Tích vô hướng của hai vectơ (có đáp án) - Kết nối tri thức Trắc nghiệm Toán 10
Haylamdo biên soạn và sưu tầm với 15 bài tập trắc nghiệm Tích vô hướng của hai vectơ Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
16 Bài tập Tích vô hướng của hai vectơ (có đáp án) - Kết nối tri thức Trắc nghiệm Toán 10
Câu 1. Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?
A. và .
B. và .
C. và .
D. và .
Câu 2. Góc giữa vectơ và vecto có số đo bằng:
A. 90°.
B. 0°.
C. 135°.
D. 45°.
Câu 3. Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?
A.
B. và
C.
D.
Câu 4. Khi nào thì hai vectơ và vuông góc?
A. . = 1;
B. . = - 1;
C. . = 0;
D. a.b = -1.
Câu 5. Trong mặt phẳng tọa độ Oxy, cho điểm A(-1; 3), B(0; 4) và C(2x – 1; 3x2). Tổng các giá trị của x thỏa mãn
A. ;
B. ;
C. ;
D. 1.
Câu 6. Khi nào tích vô hướng của hai vecto là một số dương.
A. Khi góc giữa hai vectơ là một góc tù;
B. Khi góc giữa hai vectơ là góc bẹt;
C. Khi và chỉ khi góc giữa hai vectơ bằng 00;
D. Khi góc giữa hai vectơ là góc nhọn hoặc bằng 00.
Câu 7. Khi nào thì
A. = 0;
B. Góc giữa hai vecto là 0° hoặc 180°;
C. = 1;
D. Góc giữa hai vecto là 90°.
Câu 8. Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính theo a, b, c.
A. ;
B. ;
C. ;
D.
Câu 9. Tính tích vô hướng của hai vectơ là k. Nhận xét nào sau đây đúng về giá trị của k.
A. k chia hết cho 2;
B. k là một số hữu tỉ;
C. k là một số nguyên dương;
D. k là một số vô tỉ.
Câu 10. Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vecto và trong trường hợp .
A. 30°;
B. 45°;
C. 60°;
D. 90°.
Câu 11. Cho đoạn thẳng AB và điểm I là trung điểm của đoạn thẳng AB. Với điểm M bất kì, khẳng định nào dưới đây là đúng?
A. MI2 + IA2;
B. MI2 + 2 IA2;
C. MI2 – IA2;
D. 2MI2 + IA2.
Câu 12. Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.
A. 11,4;
B. 6,7;
C. 5,7;
D. 9.
Câu 13. Tìm điều kiện của để
A. là hai vectơ ngược hướng;
B. là hai vectơ cùng hướng;
C. là hai vectơ vuông góc;
D. là hai vectơ trùng nhau.
Câu 14. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; -3), B(5; 2). Tìm điểm M thuộc tia Oy để góc
A. ;
B. ;
C. ;
D. .
Câu 15. Cho tam giác ABC có trọng tâm G. Với điểm M bất kì, đẳng thức nào sau đây đúng?
A. MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2;
B. MA2 + MB2 + MC2 = 3MG2;
C. MA2 + MB2 + MC2 = 3MG2 + (GA + GB + GC)2;
D. MA2 + MB2 + MC2 = 0.
Câu 16. Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.
A. ;
B. ;
C. 2;
D. 6.
Câu 1:
Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?
A. \(\overrightarrow a \left( {1; - 1} \right)\) và \(\overrightarrow b \left( { - 1;1} \right)\).
B. \(\overrightarrow n \left( {1;1} \right)\) và \(\overrightarrow k \left( {2;0} \right)\).
C. \(\overrightarrow u \left( {2;3} \right)\) và \(\overrightarrow v \left( {4;6} \right)\).
D. \(z\left( {a;b} \right)\) và \[\overrightarrow t \left( { - b;a} \right)\].
Câu 2:
Góc giữa vectơ \(\overrightarrow a \left( { - 1; - 1} \right)\) và vecto \(\overrightarrow b \left( { - 1;0} \right)\) có số đo bằng:
A. 90°.
B. 0°.
C. 135°.
D. 45°.
Câu 3:
Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?
A. \(\left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = {45^0}.\)
B. \(\left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = {45^0}\) và \(\overrightarrow {AC} .\overrightarrow {BC} = {a^2}.\)
C. \(\overrightarrow {AC} .\overrightarrow {BD} = {a^2}\sqrt 2 .\)
D. \(\overrightarrow {BA} .\overrightarrow {BD} = - {a^2}.\)
Câu 4:
Khi nào thì hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) vuông góc?
A. \(\overrightarrow a \).\(\overrightarrow b \)= 1;
B. \(\overrightarrow a \).\(\overrightarrow b \)= - 1;
C. \(\overrightarrow a \).\(\overrightarrow b \)= 0;
D. a.b = -1.
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho điểm A(-1; 3), B(0; 4) và C(2x – 1; 3x2). Tổng các giá trị của x thỏa mãn \(\overrightarrow {AB} .\overrightarrow {AC} = 2\)
A. \(\frac{{ - 2}}{3}\);
B. \(\frac{{ - 8}}{3}\);
C. \(\frac{{ - 5}}{3}\);
D. 1.
Câu 6:
Khi nào tích vô hướng của hai vecto \(\overrightarrow u ,\overrightarrow v \) là một số dương.
A. Khi góc giữa hai vectơ \(\overrightarrow u ,\overrightarrow v \) là một góc tù;
B. Khi góc giữa hai vectơ \(\overrightarrow u ,\overrightarrow v \) là góc bẹt;
C. Khi và chỉ khi góc giữa hai vectơ \(\overrightarrow u ,\overrightarrow v \) bằng 00;
D. Khi góc giữa hai vectơ \(\overrightarrow u ,\overrightarrow v \) là góc nhọn hoặc bằng 00.
Câu 7:
Khi nào thì \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}?\)
A. \(\overrightarrow u .\overrightarrow v \) = 0;
B. Góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 0° hoặc 180°;
C. \(\overrightarrow u .\overrightarrow v \) = 1;
D. Góc giữa hai vecto \(\overrightarrow u ,\overrightarrow v \) là 90°.
Câu 8:
Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính \(\overrightarrow {AB} .\overrightarrow {AC} \) theo a, b, c.
A. \[\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\];
B. \[\frac{{{b^2} + {c^2} - {a^2}}}{4}\];
C. \[{b^2} + {c^2} - {a^2}\];
D. \(\frac{{{b^2} + {c^2} - {a^2}}}{2}\)
Câu 9:
Tính tích vô hướng của hai vectơ \(\overrightarrow u \left( {1; - 3} \right),\overrightarrow v \left( {\sqrt 7 ;\,\, - 2} \right)\) là k. Nhận xét nào sau đây đúng về giá trị của k.
A. k chia hết cho 2;
B. k là một số hữu tỉ;
C. k là một số nguyên dương;
D. k là một số vô tỉ.
Câu 10:
Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) trong trường hợp \(\overrightarrow a \left( {3;1} \right),\overrightarrow b \left( {2;4} \right)\).
A. 30°;
B. 45°;
C. 60°;
D. 90°.
Câu 11:
A. \(\overrightarrow {MA} .\overrightarrow {MB} = \) MI2 + IA2;
B. \(\overrightarrow {MA} .\overrightarrow {MB} = \) MI2 + 2 IA2;
C. \(\overrightarrow {MA} .\overrightarrow {MB} = \) MI2 – IA2;
D. \(\overrightarrow {MA} .\overrightarrow {MB} = \) 2MI2 + IA2.
Câu 12:
Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.
A. 11,4;
B. 6,7;
C. 5,7;
D. 9.
Câu 13:
Tìm điều kiện của \(\overrightarrow u ,\overrightarrow v \) để \(\overrightarrow u .\overrightarrow v = - \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\)
A. \(\overrightarrow u ,\overrightarrow v \) là hai vectơ ngược hướng;
B. \(\overrightarrow u ,\overrightarrow v \) là hai vectơ cùng hướng;
C. \(\overrightarrow u ,\overrightarrow v \) là hai vectơ vuông góc;
D. \(\overrightarrow u ,\overrightarrow v \) là hai vectơ trùng nhau.
Câu 14:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; -3), B(5; 2). Tìm điểm M thuộc tia Oy để góc \(\widehat {AMB} = {90^0}.\)
A. \(M\left( {\frac{{ - 1 + \sqrt 5 }}{2};0} \right)\);
B. \(M\left( {\frac{{ - 1 - \sqrt 5 }}{2};0} \right)\);
C. \(M\left( {0;\frac{{ - 1 - \sqrt 5 }}{2}} \right)\);
D. \(M\left( {0;\frac{{ - 1 + \sqrt 5 }}{2}} \right)\).
Câu 15:
Cho tam giác ABC có trọng tâm G. Với điểm M bất kì, đẳng thức nào sau đây đúng?
A. MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2;
B. MA2 + MB2 + MC2 = 3MG2;
C. MA2 + MB2 + MC2 = 3MG2 + (GA + GB + GC)2;
D. MA2 + MB2 + MC2 = 0.
Câu 16:
Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.
A. \(\frac{6}{5}\);
B. \(\frac{{26}}{5}\);
C. 2;
D. 6.