15 Bài tập Trắc nghiệm Tập hợp và các phép toán trên tập hợp (có đáp án) - Kết nối tri thức
Haylamdo biên soạn và sưu tầm với 15 bài tập trắc nghiệm Tập hợp và các phép toán trên tập hợp Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ các mức độ sách Kết nối tri thức sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
15 Bài tập Trắc nghiệm Tập hợp và các phép toán trên tập hợp (có đáp án) - Kết nối tri thức
Câu 1.Số tập con của tập A = {1; 2; 3}là
A.8
B.6
C.5
D.7
Câu 2.Hãy liệt kê các phần tử của tập hợp
A. X =
B. X = {0}
C. X = 0
D. X = { }
Câu 3.Số tập con có 2 phần tử của tập M = {1; 2; 3; 4; 5; 6}
A. 15
B.16
C.18
D.22
Câu 4.Cho hai tập hợp A = {0; 2; 3; 5} và B = {2; 7}. Khi đó
A. {2; 5}
B. {2}
C.
D. {0; 2; 3; 5; 7}
Câu 5.Cho A = {0; 1; 2; 3; 4}; B = {2; 3; 4; 5; 6}. Tìm tập
A. {5; 6}
B. {1; 2}
C. {2; 3; 4}
D. {0; 1; 5; 6}
Câu 6.Số phần tử của tập hợp là
A.1
B.2
C. 3
D.5
Câu 7.Một lớp học có 16 học sinh học giỏi môn Toán; 12 học sinh học giỏi môn Văn; 8 học sinh vừa học giỏi môn Toán và Văn; 19 học sinh không học giỏi cả hai môn Toán và Văn. Hỏi lớp học có bao nhiêu học sinh?
A. 31
B.54
C.39
D.47
Câu 8.Cho A = {a; b; c}; B = {b; c; d}; C = {a; b; c; d; e}. Khẳng định nào sau đây sai
A.
B.
C.
D.
Câu 9.Cho A = {a; b; m; n}; B = {b; c; m}; C = {a; m; n}. Hãy chọn khẳng định đúng.
A.
B.
C.
D.
Câu 10. Cho hai tập và . Hỏi các số tự nhiên thuộc cả hai tập A và B là những số nào?
A. 0;
B. 1;
C. 0 và 1;
D. Không có.
Câu 11.Cho và . Tìm kết quả phép toán .
A. {2; 4};
B. {2};
C. {4; 5};
D. {3}.
Câu 12.Cho hai tập A = [–1 ; 3); B = [a; a + 3]. Với giá trị nào của a thì .
Câu 13.Cho hai tập A = [0; 5]; B = (2a; 3a + 1), a > –1. Với giá trị nào của a thì .
Câu 14.Một lớp có 45 học sinh. Mỗi em đều đăng ký chơi ít nhất một trong hai môn: bóng đá và bóng chuyền. Có 35 em đăng ký môn bóng đá, 15 em đăng ký môn bóng chuyền. Hỏi có bao nhiêu em đăng ký chơi cả 2 môn?
A. 5;
B. 10;
C. 30;
D. 25.
Câu 15.Lớp 10A có 45 học sinh, trong đó có 15 học sinh được xếp loại học lực giỏi, 20 học sinh được xếp loại hạnh kiểm tốt, 10 em vừa xếp loại học lực giỏi, vừa có hạnh kiểm tốt. Hỏi có bao nhiêu học sinh xếp loại học lực giỏi hoặc có hạnh kiểm tốt?
A. 25;
B. 10;
C. 45;
D. 35.
Câu 2:
Hãy liệt kê các phần tử của tập hợp \(X = \,{\rm{\{ }}x \in \mathbb{R},\,{x^2} + x + 1 = 0\} \)
A. X = \(\emptyset \);
B. X = {0};
C. X = 0;
D. X = {\(\emptyset \)}.
Câu 3:
Số tập con có 2 phần tử của tập M = {1; 2; 3; 4; 5; 6}
A. 15;
B. 16;
C. 18;
D. 22.
Câu 4:
Cho hai tập hợp A = {0; 2; 3; 5} và B = {2; 7}. Khi đó \[{\rm{A}} \cap {\rm{B}}\]
A. {2; 5};
B. {2};
C. \[\emptyset \];
D. {0; 2; 3; 5; 7}.
Câu 5:
Cho A = {0; 1; 2; 3; 4}; B = {2; 3; 4; 5; 6}. Tìm tập \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{B}}\backslash {\rm{A}}} \right)\)
A. {5; 6};
B. {1; 2};
C. {2; 3; 4};
D. {0; 1; 5; 6}.
Câu 6:
Số phần tử của tập hợp \(A = {\rm{\{ }}{k^2} + 1|k \in \mathbb{Z},\,\left| k \right| \le 2\} \) là
A. 1
B. 2
C. 3
D. 5
Câu 7:
Một lớp học có 16 học sinh học giỏi môn Toán; 12 học sinh học giỏi môn Văn; 8 học sinh vừa học giỏi môn Toán và Văn; 19 học sinh không học giỏi cả hai môn Toán và Văn. Hỏi lớp học có bao nhiêu học sinh?
A. 31;
B. 54;
C. 39;
D. 47.
Câu 8:
Cho A = {a; b; c}; B = {b; c; d}; C = {a; b; c; d; e}. Khẳng định nào sau đây sai
A. \(\left( {{\rm{A}} \cup {\rm{B}}} \right) \cap {\rm{C}} = \left( {{\rm{A}} \cap {\rm{B}}} \right) \cup {\rm{C}}\);
B. \({\rm{A}} \cup \left( {{\rm{B}} \cap {\rm{C}}} \right) = \left( {{\rm{A}} \cup {\rm{B}}} \right) \cap \left( {{\rm{A}} \cup {\rm{C}}} \right)\);
C. \[{\rm{A}} \cup {\rm{(B}} \cap {\rm{C)}}\,{\rm{ = }}\,({\rm{A}} \cup {\rm{B)}} \cap {\rm{C}}\];
D. \[{\rm{(A}} \cup {\rm{B)}} \cap {\rm{C}}\,{\rm{ = }}\,{\rm{(A}} \cup {\rm{B)}} \cap {\rm{(A}} \cup {\rm{C)}}\].
Câu 9:
Cho A = {a; b; m; n}; B = {b; c; m}; C = {a; m; n}. Hãy chọn khẳng định đúng.
A. \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{m}};{\rm{n}}} \right\}\);
B. \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{c}};{\rm{m}};{\rm{n}}} \right\}\);
C. \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{b}};{\rm{m}};{\rm{n}}} \right\}\);
D. \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{A}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{n}}} \right\}\).
Câu 10:
Cho hai tập \({\rm{A = \{ }}x \in \mathbb{R},\,x + 3 < 4 + 2x\)} và \({\rm{B = \{ }}x \in \mathbb{R},\,5x - 3 < 4x - 1\} \). Hỏi các số tự nhiên thuộc cả hai tập A và B là những số nào?
A. 0;
B. 1;
C. 0 và 1;
D. Không có.
Câu 11:
Cho \({\rm{A = \{ }}x \in \mathbb{N},\,(2x - {x^2})(2{x^2} - 3x - 2) = 0\} \) và \({\rm{B = \{ n}} \in \mathbb{N},\,3 < {n^2} < 30\} \). Tìm kết quả phép toán \[{\rm{A}} \cap {\rm{B}}\].
A. {2; 4};
B. {2};
C. {4; 5};
D. {3}.
Câu 12:
Cho hai tập A = [–1 ; 3); B = [a; a + 3]. Với giá trị nào của a thì \[{\rm{A}} \cup {\rm{B}} = \emptyset \].
A. \[\left[ \begin{array}{l}{\rm{a}} \ge 3\\{\rm{a}} < 4\end{array} \right.\];
B. \[\left[ \begin{array}{l}{\rm{a}} > 3\\{\rm{a}} < - 4\end{array} \right.\];
C. \[\left[ \begin{array}{l}{\rm{a}} \ge 3\\{\rm{a}} \le - 4\end{array} \right.\];
D. \(\left[ \begin{array}{l}{\rm{a}} > 3\\{\rm{a}} \le - 4\end{array} \right.\).
Câu 13:
Cho hai tập A = [0; 5]; B = (2a; 3a + 1), a > –1. Với giá trị nào của a thì \[{\rm{A}} \cap {\rm{B}} \ne \emptyset \].
A. \[\left[ \begin{array}{l}{\rm{a}} < \frac{5}{2}\\{\rm{a}} \ge - \frac{1}{3}\end{array} \right.\];
B. \(\left[ \begin{array}{l}{\rm{a}} \ge \frac{5}{2}\\{\rm{a}} < - \frac{1}{3}\end{array} \right.\);
C. \( - \frac{1}{3} \le {\rm{a}} < \frac{5}{2}\);
D. \[ - \frac{1}{3} \le {\rm{a}} \le \frac{5}{2}\].
Câu 14:
Một lớp có 45 học sinh. Mỗi em đều đăng ký chơi ít nhất một trong hai môn: bóng đá và bóng chuyền. Có 35 em đăng ký môn bóng đá, 15 em đăng ký môn bóng chuyền. Hỏi có bao nhiêu em đăng ký chơi cả 2 môn?
A. 5;
B. 10;
C. 30;
D. 25.
Câu 15:
Lớp 10A có 45 học sinh, trong đó có 15 học sinh được xếp loại học lực giỏi, 20 học sinh được xếp loại hạnh kiểm tốt, 10 em vừa xếp loại học lực giỏi, vừa có hạnh kiểm tốt. Hỏi có bao nhiêu học sinh xếp loại học lực giỏi hoặc có hạnh kiểm tốt?
A. 25;
B. 10;
C. 45;
D. 35.
Câu 1:
Tập hợp X = {x ∈ ℤ | 2 < x < 5} bằng tập hợp nào sau đây?
Câu 2:
Cho tập hợp B gồm các số tự nhiên bé hơn 20 và chia hết cho 4.
Viết tập hợp trên dưới dạng chỉ ra tính chất đặc trưng cho các phần tử của tập hợp đó.
B. B = {x ∈ ℤ | x < 20 và x ⋮ 4};
Câu 3:
Cho tập hợp E = {x ∈ ℕ | x là ước chung của 20 và 40}.
Tập hợp E có bao nhiêu phần tử?
A. 4
B. 5
C. 3
D. 2
Câu 4:
Cho các tập hợp : D = {1 ; 2 ; 3 ; 6 ; 9 ; 18} và E = {-1 ; 3 ; 5}. Phần tử nào dưới đây thuộc tập hợp E\D.
A. 2
B. 9
C. 3
D. -1
Câu 6:
Cho các tập hợp:
A = {x ∈ ℤ | -1 < x < 6};
B = {x ∈ ℤ | 0 ≤ x ≤ 1}.
Xác định A\B. Câu nào sau đây đúng?
C. A\B = {2; 3};
Câu 7:
Cho các tập hợp:
A = {x ∈ ℤ | 1 < x < 4};
B = {x ∈ ℤ | 3 < x < 5}.
Xác định tập hợp X = A ∪ B.
A. X = {2; 3; 4};
Câu 1:
Tập hợp C = {x ∈ ℤ | (x2 – 5x + 4)(x2 x + 3) = 0} có bao nhiêu phần tử?
Câu 2:
Cho ba tập hợp sau:
A = {m + 1; 2}
B = {1; n – 3}
C = {t; 2}
Hỏi m, n, t nhận giá trị nào sau đây thì A = B = C?
B. m = – 1, n = 5, t = 1;
Câu 3:
Cho tập hợp B = {x ∈ ℕ| 3 < 2x – 1 < m}.
Tìm giá trị của m để B là tập hợp rỗng?
Câu 4:
Trong các tập hợp sau, tập hợp nào không phải là tập hợp rỗng?
Câu 5:
Cho các tập hợp:
A = {x ∈ ℤ | -4 ≤ x ≤ 5};
B = {x ∈ ℤ | -2 ≤ x ≤ 6};
C = {x ∈ ℤ | 0 ≤ x ≤ 1}.
Xác định tập hợp X = (A ∩ B)\C. Câu nào sau đây đúng?
B. X = {2; 3; 4; 5};
C. X = {-2; -1; 2; 3; 4; 5};
Câu 6:
Lớp 10B1 có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10B1 là:
A. 9
B. 10
C. 18
D. 28
Câu 7:
Trong kì thi học sinh giỏi cấp trường, lớp 11B1 có 15 học sinh giỏi Văn, 22 học sinh giỏi Toán. Tìm số học sinh giỏi cả Văn và Toán biết lớp 11B1 có 40 học sinh, và có 14 học sinh không đạt học sinh giỏi.
A. 4
B. 7
C. 11
D. 20
Câu 8:
Cho tập hợp A = [4; 7] và B = [2a + 3b – 1; 3a – b + 5] với a, b ∈ ℝ. Khi A = B thì giá trị của biểu thức M = a2 + b2 bằng?
A. 2
B. 5
C. 13
D. 25
Câu 1:
Cho A = {x ∈ ℝ | |x – m| ≤ 25}; B = {x ∈ ℝ | |x| ≥ 2020}.
Có bao nhiêu giá trị nguyên m thỏa mãn A ∩ B = ∅.
A. 3987;
B. 3988;
D. 2020
Câu 2:
Lớp 10A có 40 học sinh trong đó có 10 bạn học sinh giỏi Toán, 15 bạn học sinh giỏi Lý và 19 bạn không giỏi môn học nào trong hai môn Toán, Lý. Hỏi lớp 10A có bao nhiêu bạn học sinh vừa giỏi Toán vừa giỏi Lý?
A. 7
B. 10
C. 4
D. 17
Câu 3:
Cho hai tập hợp P = [3m – 6; 4] và Q = (-2; m + 1), m ∈ ℝ. Tìm m để
P\Q = ∅.
A. 3 ≤ m < ;
Câu 4:
A. 20;
Câu 5:
Cho tập M = {(x; y) | x, y ∈ ℝ và x2 + y2 ≤ 0}. Hỏi tập M có bao nhiêu phần tử?
A. 0
B. 1
C. 2