X

Bài tập trắc nghiệm Toán lớp 8

Trắc nghiệm Mở đầu về phương trình có đáp án - Toán lớp 8


Trắc nghiệm Mở đầu về phương trình có đáp án

Với bộ bài tập Trắc nghiệm Mở đầu về phương trình Toán lớp 8 chọn lọc, có đáp án sẽ giúp học sinh hệ thống lại kiến thức bài học và ôn luyện để đạt kết quả cao trong các bài thi môn Toán lớp 8.

Trắc nghiệm Mở đầu về phương trình

Bài 1: Hai phương trình tương đương là hai phương trình có

A. ­Một nghiệm giống nhau

B. Hai nghiệm giống nhau

C. Tập nghiệm giống nhau

D. Tập nghiệm khác nhau

Lời giải

Hai phương trình tương đương là hai phương trình có cùng tập nghiệm

Đáp án cần chọn là: C

Bài 2: Chọn khẳng định đúng

A. Hai phương trình được gọi là tương đương nếu chúng có cùng tập nghiệm

B. Hai phương trình được gọi là tương đương nếu chúng có cùng số nghiệm

C. Hai phương trình được gọi là tương đương nếu chúng có chung một nghiệm

D. Hai phương trình được gọi là tương đương nếu chúng cùng điều kiện xác định

Lời giải

Hai phương trình được gọi là tương đương nếu chúng có cùng tập nghiệm

Đáp án cần chọn là: A

Bài 3: Số Trắc nghiệm Diện tích hình chữ nhật có đáp án là nghiệm của phương trình nào dưới đây?

A. x - 1 = Trắc nghiệm Diện tích hình chữ nhật có đáp án

B. 4x2 – 1 = 0

C. x2 + 1 = 5

D. 2x – 1 = 3

Lời giải

Thay x = Trắc nghiệm Diện tích hình chữ nhật có đáp án vào từng phương trình ta được

+) Trắc nghiệm Mở đầu về phương trình có đáp án (L) nên x = Trắc nghiệm Diện tích hình chữ nhật có đáp án không là nghiệm của phương trình x – 1 = Trắc nghiệm Diện tích hình chữ nhật có đáp án

+) Trắc nghiệm Mở đầu về phương trình có đáp án (L) nên x = Trắc nghiệm Diện tích hình chữ nhật có đáp án không là nghiệm phương trình x2 + 1 = 5

+) Trắc nghiệm Mở đầu về phương trình có đáp án (L) nên x = Trắc nghiệm Diện tích hình chữ nhật có đáp án không là nghiệm của phương trình 2x – 1 = 3

+) 4x2 – 1 = 0

Trắc nghiệm Mở đầu về phương trình có đáp án (N) nên x = Trắc nghiệm Diện tích hình chữ nhật có đáp án là nghiệm của phương trình 4x2 – 1 = 0

Đáp án cần chọn là: B

Bài 4: Phương trình nào sau đây nhận x = 2 làm nghiệm?

Trắc nghiệm Mở đầu về phương trình có đáp án

Lời giải

Đáp án A loại vì x = 2 không thỏa mãn điều kiện xác định

Đáp án B: 22 – 4 = 4 – 4 = 0 nên x = 2 là nghiệm của phương trình đáp án B.

Đáp án C: Dễ thấy 2 + 2 = 4 ≠ 0 nên x = 2 không là nghiệm của phương trình đáp án C

Đáp án D: Thay x = 2 ta được VT = 2 – 1 = 1 ≠ Trắc nghiệm Diện tích hình chữ nhật có đáp án(3.2 - 1) = VP nên không là nghiêm

Đáp án cần chọn là: B

Bài 5: Chọn khẳng định đúng

A. 3 là nghiệm của phương trình x2 – 9 = 0

B. {3} là tập nghiệm của phương trình x2 – 9 = 0

C. Tập nghiệm của phương trình (x + 3)(x – 3) = x2 – 9 là Q

D. x = 2 là nghiệm duy nhất của phương trình x2 – 4 = 0

Lời giải

+ Ta có x2 – 9 = 0 ⇔ x2 = 9 ⇔ x = ±3. Nên x = 3 là nghiệm của phương trình x2 – 9 = 0 và tập nghiệm của phương trình là {3; -3}. Suy ra A đúng, B sai.

+ Xét (x + 3)(x – 3) = x2 – 9 ⇔ x2 – 9 = x2 – 9 (luôn đúng) nên tập nghiệm của phương trình là R, suy ra C sai.

+ Xét x2 – 4 = 0 ⇔ x2 = 4 ⇔ x = ±2 ⇒ phương trình có hai nghiệm x = 2; x = -2 nên D sai

Đáp án cần chọn là: A

Bài 6: Cho các mệnh sau:

(I) 5 là nghiệm của phương trình 2x – 3 = Trắc nghiệm Mở đầu về phương trình có đáp án 

(II) Tập nghiệm của phương trình 7 – x = 2x – 8 là x = 5

(III) Tập nghiệm của phương trình 10 – 2x = 0 là S = {5}.

Số mệnh đề đúng là:

A. 1

B. 0

C. 2

D. 3

Lời giải

Mệnh đề (I): Thay x = 5 vào phương trình ta được VT = 2.5 – 3 = 7; VP = Trắc nghiệm Mở đầu về phương trình có đáp án

Do đó VT = VP hay x = 5 là nghiệm của phương trình

Do đó (I) đúng

Mệnh đề (II): Sai do kí hiệu

7 – x = 2x – 8 ⇔ x = 5 nên phương trình có tập nghiệm S = {5}

Vậy có 2 mệnh đề đúng.

Đáp án cần chọn là: C

Bài 7: Phương trình nào sau đây vô nghiệm?

A. x – 1 = 0

B. 4x2 + 1 = 0

C. x2 – 3 = 6

D. x2 + 6x = -9

Lời giải

+) x – 1 = 0 ⇔ x = 1Ø

+) 4x2 + 1 = 0 ⇔ 4x2 = -1 (vô nghiệm vì 4x2 ≥ 0; Ɐx)

+) x2 – 3 = 6    ⇔ x2 = 9 ⇔ x = ± 3

+) x2 + 6x = -9 ⇔ x2 + 6x + 9 = 0 ⇔ (x + 3)2 = 0 ⇔ x + 3 = 0 ⇔ x = -3

Vậy phương trình 4x2 + 1 = 0 vô nghiệm

Đáp án cần chọn là: B

Bài 8: Phương trình nào sau đây vô nghiệm?

A. 2x – 1 = 0

B. -x2 + 4 = 0

C. x2 + 3 = -6

D. 4x2 +4x = -1

Lời giải

+) 2x – 1 = 0 ⇔ x = Trắc nghiệm Diện tích hình chữ nhật có đáp án 

+) -x2 + 4 = 0 ⇔ x2 = 4 ⇔ x = ±2

+) x2 + 3 = -6 ⇔ x2 = -9 (vô nghiệm vì -9< 0)

+) 4x2 + 4x = -1 ⇔ 4x2 +4x + 1 = 0 ⇔ (2x + 1)2 = 0 ⇔ 2x + 1 = 0 ⇔ x = -Trắc nghiệm Diện tích hình chữ nhật có đáp án 

Đáp án cần chọn là: C

Bài 9: Tập nghiệm của phương trình 3x – 6 = x – 2 là

A. S = {2}

B. S = {-2}

C. S = {4}

D. S = Ø

Lời giải

Ta có 3x – 6 = x – 2 ⇔ 3x – x = -2 + 6 ⇔ 2x = 4 ⇔ x = 2

Tập nghiệm của phương trình là S = {2}

Đáp án cần chọn là: A

Bài 10: Phương trình Trắc nghiệm Mở đầu về phương trình có đáp án có tập nghiệm là

A. S = {±4}

B. S = {±2}

C. S = {2}

D. S = {4}

Lời giải

ĐKXĐ: x + 4 ≠ 0 ⇔ x ≠ -4

Phương trình ⇔ 3x2 – 12 = 0 ⇔ x2 = 4 ⇔ x = ±2 (tm)

Vậy tập nghiệm của phương trình là S = {±2}

Đáp án cần chọn là: B

Bài 11: Có bao nhiêu nghiệm của phương trình |x + 3| = 7?

A. 2

B. 1

C. 0

D. 4

Lời giải

Ta có: Trắc nghiệm Mở đầu về phương trình có đáp án 

Vậy phương trình có hai nghiệm x = 4; x = -10

Đáp án cần chọn là: A

Bài 12: Số nghiệm của phương trình 5 - |2x + 3| = 0 là

A. 2

B. 1

C. 0

D. 4

Lời giải

Trắc nghiệm Mở đầu về phương trình có đáp án

Vậy phương trình có hai nghiệm x = 1; x = -4

Đáp án cần chọn là: A

Bài 13: Hai phương trình nào sau đây là hai phương trình tương đương?

A. x – 2 =4 và x + 1 = 2

B. x = 5 và x2 = 25

C. 2x2 – 8 = 0 và |x| = 2

D. 4 + x = 5 và x3 – 2x = 0

Lời giải

+) Xét x – 2 = 4 ⇔ x = 6 và x + 1 = 2 ⇔ x = 1 nên hai phương trình x – 2 =4 và x + 1 = 2 không tương đương

+) Xét phương trình x2 = 25 ⇔ x = ±5 nên phương trình x2 = 25 có hai nghiệm. Suy ra hai phương trình x = 5 và x2 = 25 không tương đương.

+) Xét phương trình 4 + x = 5 ⇔ x = 1, mà x = 1 không là nghiệm của phương trình x3 – 2x = 0 (vì 13 – 2.1= -1 ≠ 0) nên hai phương trình 4 + x = 5 và x3 – 2x = 0 không tương đương.

+) Xét phương trình 2x2 – 8 = 0 ⇔ 2x2 = 8 ⇔ x2 = 4 ⇔  Trắc nghiệm Mở đầu về phương trình có đáp án

Nhận thấy hai phương trình trên có cùng tập nghiệm {2; -2} nên chúng tương đương.

Đáp án cần chọn là: C

Bài 14: Số cặp phương trình tương đương trong các cặp phương trình sau là:

(I) x – 2 =4 và x + 1 = 2

(II) x = 5 và x2 = 25

(III) 2x2 – 8 = 0 và |x| = 2

(IV) 4 + x = 5 và x3 – 2x = 0

A. 1

B. 2

C. 3

D. 4

Lời giải

+) Xét x – 2 = 4 ⇔ x = 6 và x + 1 = 2 ⇔ x = 1 nên hai phương trình x – 2 =4 và x + 1 = 2 không tương đương

+) Xét phương trình x2 = 25 ⇔ x = ±5 nên phương trình x2 = 25 có hai nghiệm. Suy ra hai phương trình x = 5 và x2 = 25 không tương đương.

+) Xét phương trình 4 + x = 5 ⇔ x = 1, mà x = 1 không là nghiệm của phương trình x3 – 2x = 0 (vì 13 – 2.1= -1 ≠ 0) nên hai phương trình 4 + x = 5 và x3 – 2x = 0 không tương đương.

+) Xét phương trình 2x2 – 8 = 0 ⇔ 2x2 = 8 ⇔ x2 = 4 ⇔  Trắc nghiệm Mở đầu về phương trình có đáp án

Nhận thấy hai phương trình trên có cùng tập nghiệm {2; -2} nên chúng tương đương.

Vậy chỉ có 1 cặp phương trình tương đương trong các cặp đã cho

Đáp án cần chọn là: A

Bài 15: Phương trình nào dưới đây nhận x = a (a là hằng số khác 0 và 1) làm nghiệm

Trắc nghiệm Mở đầu về phương trình có đáp án

Lời giải

Thay x = a vào từng phương trình ta được

+) 5.a – 3a = 2 ⇔ 2a = 2 ⇔ a = 1 (loại) nên x = a không là nghiệm của phương trình 5x – 3a = 2

+) a2 = a ⇔ Trắc nghiệm Mở đầu về phương trình có đáp án (loại) nên x = a không là nghiệm của phương trình x2 = a

+) Trắc nghiệm Mở đầu về phương trình có đáp án (loại) nên x = a không là nghiệm của phương trình Trắc nghiệm Mở đầu về phương trình có đáp án

+) a2 – a.a = a2 – a2 = 0 nên x = a là nghiệm của phương trình x2 – a.x = 0

Đáp án cần chọn là: B

Bài 16: Phương trình nào dưới đây nhận x = -3 là nghiệm duy nhất?

Trắc nghiệm Mở đầu về phương trình có đáp án

Lời giải

Đáp án A: 5x + 3 = 0 ⇔ 5x = -3 ⇔ x = Trắc nghiệm Mở đầu về phương trình có đáp án (loại)

Đáp án B: Trắc nghiệm Mở đầu về phương trình có đáp án có ĐKXĐ: x + 3 ≠ 0 ⇔ x ≠ - 3 nên không nhận -3 làm nghiệm (loại)

Đáp án C: -x2 + 9 = 0 ⇔ x2 = 9 ⇔ x = ±3 nên phương trình có hai nghiệm x = ±3 (loại).

Đáp án D: 7 + 3x = -2 ⇔ 3x = -9 ⇔ x = -3 nên phương nhận x = - 3 làm nghiệm duy nhất.

Đáp án cần chọn là: D

Bài 17: Chọn khẳng định đúng

A. Hai phương trình x2 – 2x + 1 = 0 và x2 – 1 = 0 là hai phương trình tương đương

B. Hai phương trình x2 – 2x + 1 = 0 (1) và x2 – 1 = 0 (2) không tương đương vì x = 1 là nghiệm của phương trình (1) nhưng không là nghiệm của phương trình (2).

C. Hai phương trình x2 – 2x + 1 = 0 (1) và x2 – 1 = 0 (2) không tương đương vì x = -1 là nghiệm của phương trình (1) nhưng không là nghiệm của phương trình (2).

D. Hai phương trình x2 – 2x + 1 = 0 (1) và x2 – 1 = 0 (2) không tương đương vì x = -1 là nghiệm của phương trình (2) nhưng không là nghiệm của phương trình (1).

Lời giải

+ Xét phương trình (1): x2 – 2x + 1 = 0 ⇔ (x – 1)2 = 0 ⇔ x – 1 = 0 ⇔ x = 1

+ Xét phương trình (2): x2 – 1 = 0 ⇔ x2 = 1 ⇔ x = ±1

Nhận thấy x = -1 là nghiệm của phương trình (1) nên hai phương trình (1) và (2) không tương đương

Đáp án cần chọn là: D

Bài 18: Chọn khẳng định đúng

A. Hai phương trình x2 + 2x + 1 = 0 và x2 – 1 = 0 là hai phương trình tương đương

B. Hai phương trình x2 + 2x + 1 = 0 (1) và x2 – 1 = 0 (2) không tương đương vì x = 1 là nghiệm của phương trình (1) nhưng không là nghiệm của phương trình (2).

C. Hai phương trình x2 + 2x + 1 = 0 (1) và x2 – 1 = 0 (2) không tương đương vì x = 1 là nghiệm của phương trình (2) nhưng không là nghiệm của phương trình (1).

D. Hai phương trình x2 + 2x + 1 = 0 (1) và x2 – 1 = 0 (2) tương đương vì x = -1 là nghiệm chung của cả hai phương trình.

Lời giải

+ Xét phương trình (1): x2 + 2x + 1 = 0 ⇔ (x + 1)2 = 0 ⇔ x + 1 = 0 ⇔ x = -1

+ Xét phương trình (2): x2 – 1 = 0 ⇔ x2 = 1 ⇔ x = ±1

Nhận thấy x = 1 là nghiệm của phương trình (2) nhưng không là nghiệm của phương trình (1) nên hai phương trình (1) và (2) không tương đương

Đáp án cần chọn là: C

Bài 19: Số x0 được gọi là nghiệm của phương trình A(x) = B(x) khi

A. A(x0) < B(x0)

B. A(x0) > B(x0)

C. A(x0) = -B(x0)

D. A(x0) = B(x0)

Lời giải

Giá x0 thỏa mãn A(x0) = B(x0) được gọi là nghiệm của phương trình A(x) = B(x)

Đáp án cần chọn là: D

Bài 20: Nếu phương trình P(x) = m có nghiệm x = x0 thì x0 thỏa mãn:

A. P(x) = x0

B. P(m) = x0

C. P(x0) = m

D. P(x0) = -m

Lời giải

Nếu phương tình P(x) = m có nghiệm x = x0 thì P(x0) = m

Đáp án cần chọn là: C

Xem thêm bộ bài tập trắc nghiệm Toán lớp 8 chọn lọc, có đáp án hay khác: